
WICE-SI: Pragmatic Inter-Cluster Replication
Technical report - July 4 2006

J. Grov1, L. Soares2, A. Correia Jr.2, J. Pereira2, R. Oliveira2, and F. Pedone3

1University of Oslo
2University of Minho

3University of Lugano

July 4, 2006

Abstract

Multi-master update everywhere database replication, as achieved by protocols based on group commu-
nication such as DBSM and Postgres-R, addresses both performance and availability. By scaling it to wide
area networks, one could save costly bandwidth and avoid large round-trips to a distant master server. Also,
by ensuring that updates are safely stored at a remote site within transaction boundaries, disaster recovery is
guaranteed. Unfortunately, scaling existing cluster based replication protocols is troublesome.

In this paper we present a database replication protocol based on group communication that targets in-
terconnected clusters. In contrast with previous proposals, it uses a separate multicast group for each cluster
and thus does not impose any additional requirements on group communication, easing implementation and
deployment in a real setting. Nonetheless, the protocol ensures one-copy equivalence while allowing all
sites to execute update transactions. Experimental evaluation using the workload of the industry standard
TPC-C benchmark confirms the advantages of the approach.

This technical report is a reworked version of a paper submitted to PRDC 2006. But in that version, we
present a general algorithm and focus the theoretical discussion on serializability. In addition, this version
includes a consistency discussion arguing that our protocol do in fact provide snapshot isolation.

1 Introduction
Database replication is an attractive concept both to increase fault tolerance and to improve scalability by en-
abling several database sites to serve the same queries. The main challenge of such systems is that coordinating
updates among the participating servers inevitably delays the execution of update-transactions. A particularly
promising approach is taken by replication protocols based on group communication such as DBSM [22, 12]
and Postgres-R [18, 32]. By taking advantage of optimistic concurrency control allowed by transactional se-
mantics and of atomic multicast provided by group communication, it provides performance and scalability
even in face of demanding workloads such as the industry standard TPC-C benchmark [28].

Unfortunately, scaling existing cluster based replication protocols to a wide area network is troublesome.
Notably, the latency of uniform atomic (or safe) delivery required to ensure fault tolerance has a profound
impact on optimistic concurrency protocols leading to increased abort rate [11]. This wastes resources and
endangers the ability to commit long lived transactions in a busy server. Although optimistic delivery can
mitigate this limitation [27], using it requires an in-depth rewrite of existing protocol implementations. In fact,
the only generally available group communication toolkit supporting it is Appia [21, 24].

Furthermore, although research has been addressing group communication in wide area networks for a long
time, industrial deployment is far more common in clusters. Therefore one should expect wide area features
to be far less tested and optimized, if implemented at all. The overhead of maintaining automatic management

1

of membership spanning multiple geographically apart sites is also not negligible. Finally, the practicality of
group communication over wide area networks is also compromised by network configuration and security
issues, such as firewalls, tunnels and NAT gateways. In particular, using true multicast for efficiency is often
not an option.

In contrast, optimization of high latency and high bandwidth TCP/IP connections has seen widespread
deployment. For instance, numerous “TCP/IP-accelerator” products are commercially available to enhance
transmission performance across satellite links [20].

In this paper we present WICE-SI, a protocol targeted at multiple clusters interconnected by a wide area
network. In contrast with lazy replication protocols, such as Oracle Streams [31], WICE-SI ensures that no
globally committed transaction (i.e. which has been acknowledged to clients) is lost. On the other hand, by
allowing all replicas to be fully on-line and executing update transactions, it improves resource efficiency and
performance when compared to volume replication [29], often the only choice for disaster recovery in mission
critical applications. In detail, the contributions of this paper are:

• Introduces the protocol providing 1-copy equivalence of the native database consistency criterion, even
in the presence of faults, while confining group communication within local area clusters and improving
practicality.

• Takes advantage of directly implementing stabilization across wide-area directly on TCP/IP to greatly
reduce the likelihood of a transaction being aborted during the certification phase, which is the single
greatest obstacle to the scalability of previous proposals [11].

• Provides an experimental evaluation of the protocol applied to a multi-version database when running
the workload of the industry standard TPC-C benchmark [30], thus verifying the previous claim.

The rest of this paper is organized as follows: In Section 2, we present background and related work. In
Section 3, we introduce our system model and assumptions. Section 4 presents the protocol, while Section 5
gives the experimental results. Section 6 concludes the paper.

2 Background
In outline, the responsibilities of a replica control protocol are: (1) the overall concurrency control, ensuring that
transactions executing concurrently on different sites do not violate consistency; (2) the efficient propagation
of updates among the replicas; and (3) atomic commitment, that is, ensuring that agreement is reached among
all replicas on the outcome of transactions.

In a wide-area setting, a major challenge is to minimize the number of messages in order to reduce overall
latency. Previous studies [7, 3, 18, 22, 11, 32] advocate the appropriateness of optimistic concurrency control to
such settings. An optimistic protocol only validates a transaction’s execution against its concurrent transactions
after it has executed all operations and just before it is allowed to commit. If the validation fails, the transaction
is aborted and possibly restarted.1 In a replicated database, optimistic validation usually means that a transac-
tion is first executed locally at one site without any network interaction. Only when all operations are locally
executed, the execution is globally validated against remote, concurrent transactions using some certification
procedure. Recent replica control protocols using this approach include the optimistic protocol presented in [3],
the Postgres-R protocol presented in [18] and the Database State Machine (DBSM) [22].

In replica-control protocols with optimistic validation, updates are commonly propagated as part of the
validation protocol. Moreover, in these protocols, atomic commitment is handled through dictatorial com-
mit [1]: No individual site can veto a commit decision as long as a remote transaction request is validated by
the distributed validation procedure. It is then common [18, 22], to combine update propagation and dictatorial-
commit using an atomic broadcast primitive [16] which ensures that all non faulty replicas receive updates in
the same total order. This ordering is then used as a global timestamp [6], and is used to decide whether a
transaction is allowed to commit or abort.

1For non-interactive transactions, the restart can be performed automatically.

2

One challenge arising in all protocols that combine dictatorial-commit protocols with failover guarantees
is that before a transaction can commit, it must be ensured that the updates are present at all non faulty sites
before the transaction is allowed to commit. This is necessary to avoid dirty reads, as illustrated by the following
example: Assume a transaction T is allowed to commit at site A before T ’s updates are installed at site B, and
assume A fails immediately after, such that T is never known at site B. This can clearly lead to inconsistencies,
as any client who has already read T ’s updates from A will assume that the updates of T are also present in
cluster B.

To handle this, we must ensure that the updates are stable, i.e., that they will be known by at least one
remaining site after any kind of disaster from which we want to recover, before we allow the transaction to
commit.

If in cluster settings the modular use of a primitive providing uniform atomic delivery [16] is advantageous
by offloading all the group communication complexity and optimization to the communication toolkit, the high
and uneven latencies in wide area networks require a differentiated treatment of local and remote replicas. This
allows us to optimize the replication protocol by masking the high latency and make a conscious use of the
bandwidth of wide area links.

While for wide area specific database replication we opt for the optimistic execution approach, two recent
studies of group communication based replication recommend the use of pessimistic execution [2, 19] and
follow the active replication approach [25, 15]. In [2], each update request is atomically broadcast and executed
by every replica. In [19], transactions are broadcast at once greatly reducing the previous (per request) message
overhead. To avoid executing transactions sequentially, in [19] it is assumed that transactions are a priori
annotated with conflict classes so that coarse-grained locks can be acquired before starting execution and thus
non-conflicting transactions are allowed to execute concurrently.

3 System model
We assume the page model for a database [6]: A collection of named data items which have a value. The
combined values of the data items at any given moment is the database state. We do not make any assumptions
on the granularity of data items.

We assume a distributed database where each site is modeled as a sequential process. In detail, the execution
of each site is modeled as a sequence of steps that may change the site’s state. Namely, the database state is
manipulated by executing READ(x) and WRITE(x) steps. A transaction T is a sequence of read and write
operations followed by a COMMIT(T) or ABORT(T) operation.

Each site is assumed to contain a complete copy of the database and provides snapshot isolation[5]: Each
write-step creates a new copy of the updated item. Read-steps are allowed to access older versions of data
items, and at any time, beginning transactions are assigned a snapshot defined by a version counter lts. The
version counter at site s is incremented as soon as an update transaction T has applied all its updates and is
finished executing at s.2.

Write-steps are ordered using write-tokens to implement using first-commit wins: As soon as a transaction
T is finished executing and ready to commit, all other transactions requesting tokens held by T must be aborted.
Thus, if a transaction is blocked awaiting the write-token, it can only commit if the current holder is aborted.
When transaction T has successfully finished execution and applied all updates, lts is incremented to allow
other transactions to see its updates.

We consider a finite set of database sites that communicate through a fully connected network. Both compu-
tation and communication are asynchronous. Sites may fail only by crashing and do not recover, thus stopping
to execute database operations, or send or deliver further messages.

Database sites are organized in clusters. Within a cluster we assume a primary component group member-
ship service that provides current and consistent views of the sites believed to be up [9]. This service is intended
to allow, at any moment, the deterministic identification of a distinguished site as the cluster’s delegate (given

2In practice, this is the commit-point of T . But this is the local commit, and since we consider distributed databases we say that T
commits only when its updates are applied at all nodes

3

by a function delegate()) as well as supporting the provision of a view-synchronous multicast primitive (Sec-
tion 3.2). The availability of a primary component group membership service implicitly assumes that consensus
is solvable in our system model [14]. We do not however explicitly explain how this is achieved or otherwise
make use of any assumptions besides an asynchronous system model.

Among clusters, we assume that the failure of an entire cluster is reliably detected at the other sites. That
is, if all sites in a cluster fail then the fact is eventually noticed by the other clusters’ delegates. Otherwise, the
cluster is never suspected to have failed.3 At each cluster, the set of clusters believed to be up is given by a
function remoteClusters().

3.1 Database interface

The replication protocol presented in Section 4 uses a replication interface with the database engine that is
part of the API being defined in the context of the GORDA project [10]. The interface has been implemented
in a number of DBMS, notably in PostgreSQL [17] and Derby [4]. The interested reader can find its detailed
definition in [23]. Basically, it allows the inspection of a transaction’s execution at three specific points: (1)
on the beginning of the transaction’s execution, (2) at the end of the transaction’s execution, just before it start
committing updates or rolls back, and (3) when the local database system has committed the transaction and is
ready to reply to the client. Furthermore, the database engine provides an update method executed with priority
over any other running transactions that allows to update the values of a given set of items.

More precisely, we assume that the replicated database engine allows to register four callback methods as
follows:

onExecuting(tid) invoked before a transaction is about to enter the executing state, i.e., before it starts execu-
tion. The transaction is identified by tid.

onCommitting(tid, ws, wv) invoked when the transaction tid has finished its local execution, is validated by
the local concurrency control, and is about to enter the commit phase. The database provides the set of
tuples written (ws) by the transaction, as well as the written values (wv). At this point the transaction has
all its updates buffered and all write locks still acquired.

onAborting(tid) invoked when the transaction tid fails and is about to abort.

onCommitted(tid) invoked after the transaction has completed making all updates persistent, updated the
local version-counter, entered the committed state and is ready to reply to the client. Updating the local
version-counter means that the updates of transaction tid become part of the snapshot of subsequent
transaction.

When it invokes any of the above methods, the database engine suspends the execution of the transaction
until the protocol replies by invoking the database methods continueExecuting(tid), continueCommitting(tid),
continueAborting(tid) and continueCommitted (tid), respectively.

Replica updates are submitted to the database using the db update (tid, ws, wv) method which applies the
values in wv to the tuples in ws by means of a high priority transaction. A transaction submitted through
db update only triggers the onCommitted(tid) events. High priority means that any regular (i.e. non-high
priority) transaction holding locks on any item in ws will be aborted. Moreover, high priority transactions are
serialized when requesting locks and then executed concurrently.

3.2 Communication primitives

3.2.1 Intra-cluster communication

Within clusters a group communication toolkit is available providing reliable point-to-point communication and
FIFO uniform view-synchronous multicast [9]. These primitives rely on the existence of a (primary component)

3This assumption is equivalent to have a perfect failure detector among the clusters [8]. In a wide area setting, its provision would
require the use of a specially dedicated communication infrastructure among the clusters or rely on human intervention to declare the
unavailability of all cluster sites.

4

group membership service that tracks the membership of the cluster through a sequence of views satisfying the
following property:

Agreement on the view history Let vp
i denote the ith view at site p. If p installs vp

i and if q installs vq
i , then

we have vp
i = vq

i .

The agreement property allows us to denote a view simply by vi without mentioning a particular site. The
specification of a group membership service includes additional properties that, for the sake of simplicity, we
intentionally omit here.

Point-to-point reliable communication is defined by two primitives r send and r deliver, and satisfies the
following properties:

Delivery Integrity A message m is delivered at most once and only if m has been previously sent.

Reliable Delivery: If sites p and q both belong to vi ∩ vi+1 and p sends m to q in vi then q delivers m before
vi+1.

Uniform view-synchronous multicast is defined through primitives u vscast and u vsdeliver and satisfies
the following two properties:

Delivery Integrity A message m is delivered at most once and only if m has been previously vscast.

Sending View Delivery A message m vscast in view vi is delivered in view vi.

Uniform View Synchrony If site p belongs to view vi and delivers m before vi+1, then every site q in vi∩vi+1

delivers m before vi+1.

FIFO uniform view-synchronous multicast is invoked through primitive fifo u vscast and in addition to the
above properties satisfies:

FIFO Delivery If site p vscasts two consecutive messages m1 and m2, then no site delivers m2 before m1.

3.2.2 Inter-cluster communication

Among them, clusters exchange messages through a point-to-point FIFO reliable channel. They use primitives
fifo r send and fifo r deliver satisfying the following properties:

Delivery Integrity A message m is delivered at most once and only if m has been previously sent.

Reliable Delivery: If cluster p and q are both correct and p sends m to q then q eventually delivers m.

FIFO Delivery If cluster p sends two consecutive messages m1 and m2 to cluster q, then q does not deliver
m2 before m1.

A cluster is said to be correct if it does not fail entirely.

4 The WICE-SI protocol
The WICE-SI protocol adopts an optimistic concurrency control policy. Transactions are executed optimisti-
cally at any site and then, just before commit, certified against concurrent transactions. WICE-SI borrows from
protocols such as Postgres-R [18] and DBSM [22] often called certification based protocols. These protocols
share two fundamental characteristics: (1) each database site is assumed to store the whole database and trans-
actions can be executed at any site, and (2) all update transactions are certified and, if valid, committed in the
same order at all sites.

5

Figure 1: WICE-SI: example of handling of transaction T

The protocol given here provides snapshot isolation, similar to Postgres-R(SI)[32] and a variant of DBSM
supporting snapshots (abbrev DBSM-SI)[12]. By assuming multi-version concurrency control at each site,
read-operations are not considered for certification as each transaction T is assumed to read from a snapshot
defined by all committed transaction when T entered execution[5].

The fundamental difference between Postgres-R(SI), DBSM-SI and WICE-SI is when and where the certifi-
cation is performed. The two former protocols use a total order broadcast primitive and certify each transaction
once the totally ordered message is delivered. In Postgres-R(SI), each transaction is certified at the site that
executed it and the outcome of the certification is then sent to all the other sites. In the DBSM-SI, the write
set of the transaction is sent to all sites allowing the certification to be carried at all sites avoiding the last
communication step of Postgres-R(SI).

WICE-SI does not make use of a total order primitive, instead ordering is explicitly handled by the protocol.
In WICE-SI, one of the sites plays the role of certifier, it totally orders and certifies all transactions. Each valid
transaction is then broadcast together with its ordering timestamp and updates. This allows to leverage the
knowledge about the system’s topology and make optimizations that would not be possible otherwise.

The WICE-SI algorithm is exemplified in Figure 1. In a nutshell, the handling of a transaction proceeds
as follows. Consider a system consisting of two clusters A and B. Each cluster has a designated delegate
responsible for handling the communication with the other cluster. The delegate of cluster A, site s2 is also
responsible for certifying all executed transactions. When an update transaction T is submitted to site s1 (T ′s
initiator), it is readily executed and sent to the certifier. If it succeeds, then the certifier propagates T ’s updates
and ordering-timestamp, both locally and to cluster’s B delegate. The latter, in turn, propagates T locally. Once
a delegate is certain that all sites in its cluster delivered T ’s data it acknowledges the fact to the other cluster’s
delegate. This acknowledgement is multicast locally by each delegate. Once a database site knows T ’s data has
been delivered everywhere and all previous transactions had been committed, then it commits T . The initiator
of T can then reply to its client.

Note that the algorithm discussed here only applies to update transactions, as read-only transactions do
not need validation as such. Nevertheless, because we increment the versions of any object written by an
update transaction Ti before Ti becomes stable, the commit of any read-only transactions must be restricted to
ensure that no updates are read and exposed before Ti is stable (see the discussion of “dirty reads” in Section
2). For clarity, we omit this from the protocol and assume it to be handled by the local DBMS by blocking
the commit of a transaction Tr until all updaters from which it has read from are committed. Note that this
requirement apply to update transactions as well, but since a transaction Ti can only read from transactions that
were certified when Ti began execution, the certification procedure guarantees that Ti will not become stable
unless all preceding transactions are stable as long as it is certified

6

4.1 Algorithm

We now consider the protocol algorithm in detail (Figure 2). It is composed by a set of handlers that deal with
events triggered by the database engine (”Events at the initiator” and ”Transaction commit”) and with message
delivery. We assume that every database site knows the current system’s certifier through a function certifier()
and that each cluster delegate can find the other participating clusters through a function remoteClusters() as
well as identifying some delegate’s cluster through function cluster(). Further, the function delegate() is used
to determine whether the current site is the delegate of its cluster or not.

Global site variables Each database site manages four sets containing transactions known to be certified,
locally updated, locally commited and remotely stable. It keeps track of the number of locally executed trans-
actions in variable lts. The certifier keeps track of the number of certified transactions in variable gts.

Events at the initiator When a transaction tid is submitted to the database engine, the callback procedure
onExecuting(tid) is invoked prior to tid’s execution. Here the initiator replica saves the current database version
(given by the number of transactions committed locally) for tid and allows the database to proceed. Should the
transaction abort locally, onAborting() is invoked and the transaction is simply forgotten by the protocol.

On the contrary, if tid succeeds then onCommitting() is invoked and its write set and written values (ws and
wv) provided by the database are reliably sent to the certifier along with the version of the database on which the
transaction executed. The transaction’s execution is left suspended until it is certified and its outcome known. If
tid ends up committing then continueCommitting(tid) will be called, otherwise the initiator receives a (ABORT,
tid) message from the certifier and forces the transaction to abort locally.

Certification Upon delivering an update transaction to certify — (CERTIFY, tid, ts, ws, wv) — from some
initiator site the certifier performs the certification of tid against its concurrent transactions. For every certified
transaction (but not necessarily committed yet) ctid with timestamp greater than tid’s version timestamp, the
write sets of ctid and tid are compared. If there is a non empty intersection then the certification fails and an
abort message is sent back to tid’s initiator.

When tid passes the certification test then the certifier’s sequence number is incremented and tid added to
its set of certified transactions. The transaction’s id, ordering timestamp, write set and written values are then
sent to all other replicas. Locally, tid is sent using the FIFO uniform view-synchronous multicast primitive as a
(UPDATE LOC, tid, gts, ws, wv) message. Remotely, it is sent using the FIFO reliable point-to-point primitive
to each remote cluster as a (UPDATE REM, tid, gts, ws, wv) message.

Remote delivery of updates Once a cluster delegate delivers a transaction from the certifier it simply for-
wards the message to the local replicas using the FIFO uniform view-synchronous multicast primitive.

Local delivery of updates When a replica delivers a transaction tid it signals the fact adding it to its set of
updated transactions. The use of a uniform primitive ensures that once the transaction is delivered at the current
replica it is eventually delivered at all non faulty replicas in the cluster. Therefore, if the replica is a cluster
delegate it acknowledges the fact that tid became stable at the cluster to all clusters. The just delivered updates
are applied. If the replica is the tid’s initiator then it just needs to proceed with continueCommitting(tid). This
can be regarded as a local commit-operation. Although tid does not hold high priority locks at the initiator,
the fact that it passed certification means that between its execution and the local commit, no other certified
transaction conflicted with it, and consequently, tid will not be aborted by another transaction requesting high-
priority locks at tid’s initiator. For all other sites, db update is invoked.

Delivery of remote acks Each time a delegate delivers a stability acknowledgment for transaction tid from
some cluster, the pair (tid, cluster) is added to its acks set. When tid has been acknowledged by all remote
clusters, then the delegate locally declares the transaction remotely stable using the (non- uniform) view-
synchronous multicast primitive — (STABLE REM, tid). When this message is delivered each replica adds tid
to its remotestable set.

7

Global site variables
local = []1
certified = updated = pending = ()2
commited = remotestable = acks = {}3
gts = lts = 04

Events at the initator
upon onExecuting(tid)5

local[tid]=lts6
continueExecuting(tid)7

end8

upon onComitting(tid, ws, wv, type)9
rsend(CERTIFY, tid, local[tid], ws, wv) to certifier()10

end11

upon onAborting(tid)12
continueAborting(tid)13

end14

upon rdeliver(ABORT, tid) from i15
db abort(tid)16

end17

(1) Certification
upon rdeliver(CERTIFY, tid, ts, ws, wv) from initiator18

foreach (ctid, cts, cws, cwv) in certified do19
if cts < ts and (cws ∩ ws 6= ∅)) then20

r send(ABORT, tid) to initiator21
return22

gts = gts + 123
enqueue (tid, gts, ws, wv) to certified24
fifo u vscast(UPDATE LOC, tid, gts, ws, wv)25
foreach cluster in remoteClusters() do26

fifo r send(UPDATE REM, tid, gts, ws, wv) to cluster27
end28

(2) Remote delivery of updates
upon fifo r deliver(UPDATE REM, tid, ts, ws, wv) from certifier29

fifo u vscast(UPDATE LOC, tid, ts, ws, wv)30
end31

(3) Local delivery of updates
upon fifo u vsdeliver(UPDATE LOC, tid, ts, ws, wv)32

enqueue (tid, ts, ws, wv) to updated33
if delegate() then34

foreach cluster in remoteClusters() do35
r send(ACK REM, tid) to cluster36

if local[tid] then37
continueCommitting(tid)38

else39
db update(tid, ws, wv)40

enqueue (tid, ts, False) to pending41
end42

(4 and 5) Delivery of remote acks
upon r deliver(ACK REM, tid) from cluster43

acked = {}44
add (tid, cluster) to acks45
foreach (tid, c) in acks do46

add c to acked47
if remoteClusters()⊆ acked then48

u vscast(STABLE REM, tid)49
end50

upon vsdeliver(STABLE REM, tid)51
add (tid) to remotestable52

end53

Transaction commit
upon onCommitted(tid, ts) and lts = ts + 154

lts = ts; add tid to commited55
end56

upon (tid) in commited and (tid) in remotestable57
continueCommitted(tid)58

end59

Figure 2: WICE-SI protocol

Transaction commit Here, each site handles the onCommitted callback. When onCommitted (tid) is invoked,
all write-locks held by tid are already released. But the updates might still not be exposed to readers, since we
must ensure that updates are available in certification order to guarantee one-copy equivalence.

Consequently, the onCommit-handler checks all pending transactions. The pending-queue is traversed from
beginning to end. The record representing the current tid is marked to show it is ready to be committed locally.
A transaction is applied only as long as there is no previous transaction in the pending-queue which is not
ready to commit. Observe that applying a transaction tid means that its updates are made available to other
transactions by setting the lts-counter equal to tid’s order-timestamp, adding the transaction to the committed-
set.

As soon as transaction tid is known to be commited locally and stable everywhere the database is then
allowed to perform a global commit (i.e. reply to the client), which happens after continueCommitted(tid).

4.2 Failure handling

The WICE-SI algorithm tolerates both the failure of single database sites as well as the failure of whole clusters.
In this section we present and explain the recovery procedures in both cases.

Locally, each cluster is governed by a group membership service and local communication rests on view-
synchronous multicast primitives. This definitely eases failure handling locally. In the event of a site been
expelled from the group (because it was taken down, has fail, became unreachable, etc.) every other site
in the group eventually becomes aware of the fact by installing a new view of the group. This allows each
site to deterministically determine the cluster’s delegate should the former failed. Moreover, view-synchrony

8

ensures that all sites surviving the previous view delivered the same set of messages, thus not requiring any
synchronization among them. As a result, no particular procedure is required on the failure or an ordinary site.
In the next two sections we examine the failures of a cluster’s delegate and of the system’s certifier. Then, we
consider the failure of an entire cluster. For the sake of simplicity and lack of space, we assume that no sites
are added to a cluster and that once a site is expelled from the group, whatever was the reason for this, it is no
longer readmitted.

4.2.1 Delegate failover

In Figure 3a, we sketch a protocol for recovering from a site failure when this site was the cluster’s delegate.
On a view change, site d becomes aware it is the new cluster’s delegate. To ensure that no transactions are
blocked, d must rerun all transaction updates and acknowledgements received from remote clusters that may
have been incompletely processed by the previous delegate.

New delegate: Synchronization request When initialized, the new delegate d sends a message (DELE-
GATE SYNC, lts) to the certifier in order to ensure that all transactions certified since lts are delivered in its
local cluster. The lts value corresponds to the latest transactions updated in d’s cluster. The new delegate also
contacts each remote cluster with (ACK SYNC, lts, TRUE) acknowledging the local stability of all transactions
up to lts, requesting similar action from the recipients (argument TRUE of the message).

Certifier: Handle synchronization request When delivering this message, the certifier resends (in order)
each certified transaction with a certification timestamp larger then d’s lts value.

All delegates: Synchronize ACK’s When the message (ACK SYNC, clts, reply) from cluster is delivered in
a remote cluster C, the delegate of C regards all its updated transactions with ts <= clts as acknowledged by
cluster. It then just checks whether these transactions became stable in every cluster and proceeds accordingly.
If reply was set to TRUE a similar message (now with reply set to FALSE) is sent back to the initializing
delegate (just elected) so it can also update the respective acknowledgements.

4.2.2 Certifier failover

The most serious single server failure is when the current system’s certifier becomes unavailable. When ini-
tialized, the new certifier advertises itself to all delegates. There may be previously certified transactions not
yet known to new certifier so a state synchronization is due. Figure 3b shows our synchronization protocol in
pseudocode. The code assumes two existing functions, blockCertification() and unblockCertification(). Their
implementation is not shown, but they state whether all arriving certification requests should be buffered, await-
ing the synchronization protocol to finish.

New certifier: Synchronization request The new certifier c starts by invoking blockCertification() and re-
questing from each cluster all the transactions they might have delivered and updated after the last one updated
by c.

Each delegate: Send missing transactions When a (CERTSYNC REQUEST, clts) is received by the dele-
gate of a cluster C, it replies with a sublist of its updated transactions (tid, ts, ws, wv) such that ts > clts, that
is, not yet seen by the new certifier.

Certifier: Missing updates When processing a (CERTSYNC REPLY, clts, missing) from remote cluster C,
the new certifier c then checks each member of the missing list whether it has already received this transaction
from another cluster. This will happen if two or more remote clusters both know about a transaction which
is unknown by c. If not, the transaction is enqueued in the c’s certified queue. As soon as all replies from
remoteCluster() are delivered, c sets the certifiers counter gts to lts and starts distributing from its certified queue
(1) locally transactions with ts > lts and (2) remotely according to each cluster’s last updated transaction. The
certifier’s gts counter is updated for each transaction distributed locally. Finished the update, certification is
unblocked.

9

Figure 3a: Delegate failover

New delegate: Synchronization request
upon site is initialized as new delegate1

rsend(DELEGATE SYNC, lts) to certifier()2
foreach cluster in remoteClusters() do3

rsend(ACK SYNC, lts, TRUE) to cluster4
end5

Certifier: Handle synchronization request
upon rdeliver(DELEGATE SYNC, clts) from cluster6

foreach (ctid, cts, cws, cwv) in certified do7
if cts > clts then8

fifo rsend(UPDATE REM, ctid, cts, cws, cwv) to cluster9
end10

All delegates: Synchronize ACK’s
upon rdeliver(ACK SYNC, clts, reply) from cluster11

foreach (utid, uts, uws, uwv) in updated do12
acked = {}13
if clts≥ uts then14

add (utid, cluster) to acks15
foreach (utid, c) in acks do16

add c to acked17
if remoteClusters()⊆ acked then18

u vscast(STABLE REM, utid)19
if reply == TRUE then20

rsend(ACK SYNC, lts, FALSE) to cluster21
end22

Figure 3c:

All delegates: On failure of remote cluster
upon failure notification of cluster C1

foreach (tid, ts, ws, wv) in updated do2
acked = {}3
foreach (tid, c) in acks do4

add c to acked5
if remoteClusters()⊆ acked then6

u vscast(STABLE REM, utid)7
end8

Figure 3b: Certifier failover

Global site variables
synch = []1

New certifier: Synchronization request
upon site is initialized as the new certifier2

blockCertification()3
foreach cluster in remoteClusters() do4

rsend(CERTSYNC REQUEST, lts) to cluster5
end6

All delegates: Send missing transactions
upon rdeliver(CERTSYNC REQUEST, clts) from certifier7

missing = []8
foreach (tid, ts, ws, wv) in updated do9

if ts > clts then10
enqueue (tid, ts, ws, wv) to missing11

rsend(CERTSYNC REPLY, lts, missing) to certifier12
end13

Certifier: Missing updates
upon rdeliver(CERTSYNC REPLY, clts, missing) from cluster14

synched = {}15
foreach (tid, ts, ws, wv) in missing do16

if (tid, ts, ws, wv) 6∈ certified then17
enqueue (tid, ts, ws, wv) to certified18

add (cluster, clts) to synch;19
foreach (c, ts) in synch do20

add c to synched;21
if remoteClusters()⊆ synched then22

gts = lts23
foreach (tid, ts, ws, wv) in certified do24

if (ts > lts) then25
gts = gts + 126
fifo u vscast(UPDATE LOC, tid, ts, ws, wv)27

foreach (cluster, clts) in synch do28
if ts > clts then29

fifo r send(UPDATE REM, tid, ts, ws, wv) to cluster30
unblockCertification()31

end32

Figure 3: Failover handlers

4.2.3 Multiple failures

The WICE-SI protocol shall tolerate situations where multiple servers or entire clusters can fail abruptly. Most
failure scenarios can be handled using a combination of the procedure for single servers. To avoid blocking
during synchronization, we assume that all running synchronization routines are restarted if a delegate fails.

The only scenario which require special treatment is the loss of an entire cluster. In that case, the other
clusters must be informed as soon as possible to allow blocking current and future transactions to become
stable. A handler for this event is illustrated in Figure 3c.
To the reviewers: A correctness argument for the algorithm is given in the Appendix.

5 Evaluation
In replication protocols that rely on a system-wide uniform atomic broadcast, updates cannot be delivered
before the message has been delivered (and acknowledged) by all sites. This means that a full round-trip to the
most distant site 2 · tmax is required before updates can be installed, regardless of the location of the initiator.
As the probability of two transactions conflicting depends on the latency, this has a profound impact in the abort
rate of DBSM and Postgres-R [11].

In WICE-SI, and considering two clusters CA and CB , total ordering of messages is performed using a
sequencer, sited in cluster CA, also referred to as the primary cluster. Each update transaction T ’s updates are
installed as soon as the certification result is known, although visible to clients only after stabilization. Thus,
it makes sense to distinguish between install-interval and commit-interval. Commit-interval denotes the time

10

Transaction Empirical Estimators
Name Distribution
Delivery normal mean=143.70 sd=2.33
Neworder uniform min=6.45 max=16.83
Orderstatus normal mean=1.66 sd=0.83
Stocklevel uniform min=1.85 max=2.33
Payment normal mean=2.26 sd=0.21

Table 1: CPU Times distributions (milliseconds).

from the end of execution until the transaction gets committed at the originating site and is still lower bounded
by 2 · tmax. The install-interval is the time elapsed from the moment T finishes its optimistic execution until a
given site installs the incoming updates. Ignoring intra-cluster latency, and considering transactions originated
at CA, the install-interval is negligible for servers in cluster CA and close to tmax milliseconds in cluster CB .
On the other hand, for transactions originating in cluster CB , the install-interval will be close tmax and 2 · tmax

milliseconds, for CA and CB respectively.
The most significant advantage of the WICE-SI protocol when compared to DBSM in a wide area network

should therefore be its impact on the abort rate due to early delivery of updates. In this section, we experimen-
tally verify this claim.

5.1 Experimental Environment

Experimental evaluation is conducted by running an actual implementation of the protocol within a simulated
environment. By profiling real components with CPU cycle counters, the technique captures the actual over-
head introduced by protocols [26]. By fine tuning the simulation components to accurately reproduce real
components, it realistically reproduces results of real distributed systems [28]. When compared to testing in
a real setting, this allows a tight control over experimental conditions, with advantages in repeatability and
observability. The approach has been previously used to evaluate database replication protocols both in LANs
and WANs [11]. In detail, we use simulated database clients, database engines and networks, and real imple-
mentations of replication and group communication protocols.

The workload generator is configured according to the industry standard on-line transaction processing
benchmark TPC-C [30]. Briefly, a wholesale supplier with a number of geographically distributed sales districts
and associated warehouses. This workload is update intensive, as 92% of the transactions perform updates. It is
also varied, as the delivery transaction takes a considerable amount of CPU time and has a very large read-set.
The payment transaction is likely to produce Write-Write conflicts. The neworder transaction is short-lived and
with higher locality.

The results thus vary according to the platform used for calibration of the simulated environment [28]. Re-
sults presented in this paper are therefore referred to the following hardware configuration: Each server has a
single CPU AMD Opteron 250 running at 2.4GHz, 4Gb RAM and a RAID 5 SATA disk array with fibre at-
tachment. Transaction processing engines and overheads are configured according to PostgreSQL 8.0. Storage
throughput as measured at the transaction log is 40MBytes/s. CPU overheads are presented in Table 1 along
with the corresponding generator distribution and estimators parameters. With properly configured indexes and
within the range of presented results, it was verified that these are independent of the size of the database, as
dictated by TPC-C scaling rules. Note also that these values do not include contention, as when blocked waiting
for a resource, processes are not scheduled. Also according to PostgreSQL 8.0, transaction processing engines
use a multi-version concurrency control approach.

In our target scenario, 3 database servers are positioned at each of two different sites, as shown in Figure 4.
The network simulator is configured as a pair of switched 1Gbps Ethernet local area networks, connected by
a dedicated T3 link (45Mbps) with 400ms round-trip latency, representative of an inter-continental satellite
link. As a baseline, we present also results obtained when configuring all 6 servers within the same local area
network.

11

��

��

��

��

��

��

�	
��
��
�
����

���

����	��
�������

��

��	��
�������

�
���� �
����

Figure 4: Network Topology.

Throughput Latency Abort Rate

Pr
im

ar
y

cl
us

te
rC

A

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000 6000

T
ra

ns
ac

tio
ns

 p
er

 M
in

ut
e

Clients

DBSM (CLUSTER)
DBSM
WICE

(a)

 0

 500

 1000

 1500

 2000

 0 1000 2000 3000 4000 5000 6000

(m
s)

Clients

DBSM (CLUSTER)
DBSM
WICE

(b)

 0

 6

 12

 18

 24

 30

 0 1000 2000 3000 4000 5000 6000

(%
)

Clients

DBSM (CLUSTER)
DBSM
WICE

(c)

Se
co

nd
ar

y
cl

us
te

rC
B

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000 6000

T
ra

ns
ac

tio
ns

 p
er

 M
in

ut
e

Clients

DBSM (CLUSTER)
DBSM
WICE

(d)

 0

 500

 1000

 1500

 2000

 0 1000 2000 3000 4000 5000 6000

(m
s)

Clients

DBSM (CLUSTER)
DBSM
WICE

(e)

 0

 6

 12

 18

 24

 30

 0 1000 2000 3000 4000 5000 6000

(%
)

Clients

DBSM (CLUSTER)
DBSM
WICE

(f)

Figure 5: Performance results with 1-SI.

In all scenarios, we vary the number of simulated clients from 60 to 6000, equally spread by all servers.
We also take advantage of the locality in TPC-C: Clients associated with same warehouse are connected with
the same server to exploit locality, as suggested by the TPC-C specification. Note however, that with a small
probability any client updates records associated with any warehouse.

5.2 Performance Results

The performance of the WICE-SI protocol is evaluated by observing the throughput, latency and abort rate
achieved when compared with plain DBSM. As a baseline, we present results obtained by grouping all 6 servers
in the same cluster (DBSM CLUSTER). The results are obtained with Write-Write conflict certification, thus
achieving 1-SI, are presented in Figure 5. Results are presented separately for each cluster.

The first interesting observation from the baseline protocol (DBSM CLUSTER) is that the capacity of the
system is exhausted with 6000 clients. This shows up as throughput peaking (Figure 5(a)), increasing latency
due to queuing (Figure 5(b)), and abort rate due to increased concurrency (Figure 5(c)). By examining resource
usage logs one concludes that this is due to saturation of available CPU time. We should thus focus on system
behavior up to 4000 clients, as a properly configured system will perform flow control to ensure operation in
that range. Namely, throughput grows linearly, latency is approximately constant and the abort rate negligible.

Then, we turn our attention to DBSM in the target scenario. Although throughput scalability is apparently
close to linear, it is misleading as it corresponds to a high abort rate and a linearly increasing latency, in
particular in cluster CB (Figures 5(e) and 5(f)). Both are explained by the same phenomenon: As locks are
withheld during wide area stabilization, queuing delays arise, thus proportionally increasing the probability of

12

later being aborted. Aborted transactions have to be resubmitted by the application, thus further loading the
system. It is also important to underline that latency and abort rate impact both clusters equally, as expected, as
both suffer with the same 2 · tmax commit-interval.

As expected, the WICE-SI protocol improves the performance at the primary cluster without negatively im-
pacting secondary clusters. Namely, in the primary cluster the abort rate is negligible (Figure 5(c)), comparable
only with the DBSM CLUSTER scenario. The latency is also approximately constant in the safe operating
range (i.e. up to 4000 clients), although impacted by the round-trip over the wide area link (Figure 5(b)). Note
however that such impact is very close to the absolute minimum of 2 · tmax at 400 ms.

Also as expected, the abort rate of transactions initiated in the second cluster, which are impacted by a tmax

to 2 · tmax commit-interval, is not negligible although still offering a substantial improvement on DBSM. In the
next section, we discuss the impact of this in the expected usage scenario of WICE-SI.

5.3 Discussion

The workload assignment used in the previous section deserves some additional comments. The WICE-SI pro-
tocol targets the global enterprise where the goal of replication is twofold. First, by providing a cluster for each
region of the globe one avoids having route all queries to a central location and thus avoid imposing the large la-
tency on clients when no updates are performed, while at the same time balancing the load. Second, it improves
availability as even catastrophic disasters can only impact the computing or communication infrastructure at
a single location. One has therefore to consider clusters located in different timezones, having distinct peak
utilization periods.

This means that the evaluation scenario in the previous section, in which traffic in both clusters is exactly
the same, is the worst case scenario for the proposed protocol. In reality, one should be able to migrate the
centralized sequencer to the currently most loaded cluster. The additional abort rate at other locations can then
be easily solved by resubmission, as these clusters are off peak and thus with underutilized resources.

We also have not assumed that resubmission can be done automatically by the database management sys-
tem. However, this is true for many workloads, especially in current multi-tiered applications. By taking
advantage of such option one could thus completely mask the abort rate at secondary clusters.

6 Conclusion
Eager update-everywhere update database replication optimized for interconnected clusters in wide area net-
works is a valuable contribution to the infrastructure of the global enterprise. By providing the ability to locally
serve clients it improves performance and by allowing failover ensures disaster recovery with no data loss.
This is a hard problem, which existing commercial solutions address either by admitting some data loss or by
centralizing update processing.

The proposed WICE-SI protocol shows how to scale replication protocols based on group communication
to a wide area setting with increased performance, while at the same time increasing their practicality. This is
achieved by restricting group communication within clusters and using a simple peer protocol over long distance
links. The evaluation performed in a realistic platform illustrates the advantages of the approach, namely, linear
throughput scalability, up to 2 times less latency and a negligible abort rate at the cluster supporting the region
currently generating the most traffic.

The protocol can relatively easily be generalized to offer full serializability if needed, but at the cost of
higher abort rate. Our next target is to present this generalized version together with a performance evaluation.

References
[1] M. Abdallah, R. Guerraoui, and P. Pucheral. Dictatorial transaction processing: Atomic commitment

without veto right. Distributed Parallel Databases, 2002.

[2] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu. Practical wide area database replication.
Technical report, Center for Networking and Distributed Systems, Computer Science Department, Johns
Hopkins University, 2002.

13

[3] T. Anderson, Y. Breitbart, H. F. Korth, and A. Woo. Replication, consistency, and practicality: are these
mutually exclusive? In Proceedings of ACM SIGMOD international conference on Management of data,
1998.

[4] Apache. Apache derby. http://db.apache.org/derby.

[5] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ansi sql isolation
levels. In Proceedings of the 1995 ACM SIGMOD international conference on Management of data, 1995.

[6] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[7] M. J. Carey and M. Livny. Conflict detection tradeoffs for replicated data. ACM Transactions on Database
Systems, 1991.

[8] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the
ACM, 43(2), March 1996.

[9] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communication specifications: a comprehensive study.
ACM Computing Surveys, 2001.

[10] GORDA Consortium. Gorda - open replication of databases. http://gorda.di.uminho.pt/consortium, Oc-
tober 2004.

[11] A. Correia Jr., A. Sousa, L. Soares, J. Pereira, R. Oliveira, and F. Moura. Group-based replication of
on-line transaction processing servers. In Dependable Computing: Second Latin-American Symposium,
2005.

[12] S. Elnikety, F. Pedone, and W. Zwaenepoel. Database replication using generalized snapshot isolation. In
Proceedings of The 24th IEEE Symposium on Reliable Distributed Systems, 2005.

[13] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making snapshot isolation serializable.
ACM Transactions on Database Systems, 2005.

[14] M. Fischer, N. Lynch, and M. Paterson. Impossibility of distributed consensus with one faulty process.
Journal of the ACM, 1985.

[15] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE Computer, 1997.

[16] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts and related problems. Tech-
nical report, Cornell University, 1994.

[17] PostgreSQL Inc. Postgresql. http://www.postgresql.org.

[18] B. Kemme and G. Alonso. Don’t be lazy, be consistent: Postgres-R, A new way to implement database
replication. In Proceedings of 26th International Conference on Very Large Data Bases, 2000.

[19] Y. Lin, B. Kemme, M. Patiño-Martı́nez, and R. Jiménez-Peris. Consistent data replication: Is it feasible
in wans? In Euro-Par, 2005.

[20] C. Metz. Tcp over satellite... the final frontier. IEEE Internet Computing, 1999.

[21] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel supporting multiple coordinated
channels. In Proceedings of The IEEE 21st International Conference on Distributed Computing Systems,
2001.

14

[22] F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. Distributed Parallel
Databases, 2003.

[23] J. Pereira, A. Correia Jr., N. Carvalho, S. Guedes, R. Oliveira, and L. Rodrigues. Database interfaces for
replication support. Technical report, Universidade do Minho/Faculdade de Ciências da Universidade de
Lisboa, 2006.

[24] L. Rodrigues, J. Mocito, and N. Carvalho. From spontaneous total order to uniform total order: different
degrees of optimistic delivery. In In Proceedings of the 21st ACM Symposium on Applied Computing,
2006.

[25] F. Schneider. Replication management using the state-machine approach. In Distributed Systems. ACM
Press/Addison-Wesley Publishing Co., 1993.

[26] L. Soares and J. Pereira. Experimental performability evaluation of middleware for large-scale distributed
systems. In 7th International Workshop on Performability Modeling of Computer and Communication
Systems, 2005.

[27] A. Sousa, J. Pereira, F. Moura, and R. Oliveira. Optimistic total order in wide area networks. In Proceed-
ings of The 21st Symposium on Reliable Distributed Systems, 2002.

[28] A. Sousa, J. Pereira, L. Soares, A. Correia Jr., L. Rocha, R. Oliveira, and F. Moura. Testing the dependabil-
ity and performance of group communication based database replication protocols. In IEEE International
Conference on Dependable Systems and Networks - Performance and Dependability Symposium, 2005.

[29] Symantec. Veritas backup software. http://www.symantec.com/enterprise/veritas/index.jsp.

[30] Transaction Processing Performance Council (TPC). TPC benchmarkTM C standard specification revision
5.0, February 2001.

[31] M. Tumma. Oracle Streams - High Speed Replication and Data Sharing. Rampant TechPress, 2004.

[32] S. Wu and B. Kemme. Postgres-r(si): Combining replica control with concurrency control based on
snapshot isolation. In International Conference on Data Engineering, 2005.

15

A Consistency Discussion
In this appendix, we discuss how our protocol provides consistency. Our arguments are presented through four
properties. The accompanying discussion is not to be regarded as a correctness proof, but the basic ideas are
sketched.

Property 1 If a transaction T is successfully certified, it will be executed by any correct server that delivers
T ’s updates.

Correctness argument Updates are processed as soon as they are delivered. Thus, it is sufficient to show
that when delivering the updates of a certified transaction, no correct site will abort T .

We first consider the case where T is aborted at the initiator s while awaiting the certification result. When
T is sent for certification, it has finished execution, is validated by local concurrency control and the user has
submitted a commit-request. Consequently, it can only be aborted by a remote, conflicting transaction. But as
any transaction with the potential to abort T by breaking its locks must be certified before T , we are assured
that T will fail certification if there is any chance of it being aborted at the initiator. Consequently, the property
holds.

Property 2 If T is certified and T ’s updates are executed by some correct server s, T is eventually executed
by all correct servers.

Correctness argument From Property 1, we have that T will be executed at all correct servers where the
updates are delivered. Consequently, we must show that T ’s updates will eventually be delivered by all correct
servers.

In a failure-free run, this is trivial: All certified transactions are sent to all delegates immediately after
certification, and each delegate unconditionally forwards this update-message within the cluster.

In the case where either a delegate or the certifier fails during the distribution of T ’s updates, the distribution
of updates may be incomplete. First, consider the case where the delegate of a cluster C fails. A new delegate
is elected, and courtesy of the uniform vs cast used to distribute updates within a cluster, we know that either
none or all servers in C know about T . It is thus sufficient for the delegate to ask the certifier to resend any
missing transactions (see Figure 3a).

Now, consider the situation where the certifier fails. In this case, there might be some certified transaction
T ′ that is executed in some cluster, but which is not known by the new certifier. To ensure that T ′ is eventually
delivered at all servers, the new certifier first requests any missing transactions from all cluster. When all correct
clusters have responded, any updates known to be missing somewhere are resubmitted (see Figure 3b).

From this, we claim that Property 2 holds.

Property 3 If transaction Ti is applied before transaction Tk at site s, no site applies Ti after Tk.

Correctness argument Recall from the paragraph “Transaction Commit” of Section 4.1 that a transaction T
is applied when the local database-version is set equal to T ’s order-timestamp. This can be proved by showing
that if wi(x) of Ti is executed before wk(x) of Tk at some site s, Ti has been certified before Tk.

First, we consider the failure free runs. The certification handler is atomically executed, and as update-
messages are distributed within the handler using FIFO-channels, the ’UPDATE LOC’-message of Ti is re-
ceived before the ’UPDATE LOC’-message of Tk at s if and only if Ti was certified before Tk. Thus, transac-
tions are added to the pending-queue in certification order.

From line 56-65 in Figure 2, it should be clear that the updates of a transaction can be applied only if all
previous transactions are applied as well, and that this always happens in pending-queue order.

In the case where a delegate or the certifier fails during the distribution of either Ti or Tk, we must show
that the respective synchronization protocols preserve the correct ordering of updates. Since a failure can only
delay distribution, we focus on the the case where a failure occurs during the distribution of Ti, i.e. where
there’s a chance for Tk to be delivered before Ti if this is not handled correctly. Since FIFO-channels are used
to distribute updates, Tk can never be delivered before Ti at any server s if the certifier sends Ti before Tk. To
verify that this is indeed the case, we note the following:

16

• Whenever the message ’UPDATE REM’ is sent from the certifier, it is either sent upon certification or
while traversing the certified-queue.

• As long as the certifier does not fail, the certified-queue holds previously certified transactions in the
order of certification, by property of the enqueue-operation (see line 24, figure 2).

• Similarly, the updated-queue of each site stores transactions in the order of delivery. This means that as
long as the certifier has never previously failed, this queue stores transactions in certification order.

• When the certifier requests missing transactions, these are added to the missing-queue by traversing the
updated-queue.

• Finally, when a missing-queue is received from a delegate at the certifier, each entry is added to the
certified-queue by in-order traversal.

Consequently, the certified-queue obeys the certification order after certifier-failover. When the new certifier
is synchronized, missing transactions are submitted in the correct order. Based on this, we claim that updates
are always distributed in certification order, and consequently, that Property 3 holds.

Property 4 WICE-SI provides snapshot isolation.

Correctness argument Snapshot isolation (SI) is an isolation level which does not guarantee serializability,
but instead represents a pragmatic compromise. In [5], SI is defined as a follows: (1) Each read operation ri(x)
executed by a transaction Ti reads from the most recent updater of x which was committed when Ti began
execution; and (2) For any pair of concurrent update transactions Ti and Tj , either ws(Ti) ∩ ws(Tj) = ∅ or
one of the transactions are aborted. Ti and Tj are concurrent unless we have commit(Ti) < begin(Tj) or
commit(Tj) < +begin(Ti).

According to this definition, our protocol does not guarantee SI since transactions may not commit until
they are uniform. But in [5], SI is also defined in terms of the set of concurrency phenomena it precludes.
The complete list of phenomena identified by [5] are dirty write, dirty read, cursor lost update, lost update,
fuzzy read, phantoms, read skew and write skew. Only write skew and some forms of phantoms are allowed by
snapshot isolation, all the others are forbidden.

We claim that our protocol provides the same protection against these phenomena as the definition quoted
above. In outline, our protocol maintains concurrency control as follows: (1) Each read operation ri(x) exe-
cuted by a transaction Ti reads from the most recent updater of x which was applied at Ti’s initiator when it
began execution; (2) No transaction is allowed to commit unless all transactions it has read from are already
committed; and (3) For any pair of concurrent update transactions Ti and Tj , either ws(Ti)∩ws(Tj) = ∅ or one
of the transactions are aborted. Let vts(Ti) denote the version-timestamp given to Ti by the initiator, and let
cts(Ti) denote the order-timestamp assigned by the certifier. Then, two transactions Ti and Tj are concurrent
unless we have cts(Ti) <= vts(Tj) or cts(Tj) <= vts(Ti).

Property (1) and (2) are both guaranteed by our assumptions. (1) follows from the rule for updating lts,
as described in Section 3. Property (2) is discussed in the introduction of Section 4. Finally, property (3) is
ensured by our certification procedure. Assume, without loss of generality, that the write set of transaction
Tj intersects with a previously certified transaction Ti. From our validation test (line 20, Figure 2, Ti will be
aborted unless cts(Ti) <= vts(Tj).

Now we show below that our system disallows the same set of phenomena as the original definition of
snapshot isolation. When reading the following discussion, recall from Section 4.1 that the final commit of
a transaction Ti only happens when its result is allowed to be externalized, i.e. only when the transaction is
committed and stable (see Figure 1 and line 66 to 68 in Figure 2).

A dirty write is in [5] defined as
w1(x)...w2(x)...(c1 or a1). In other words, a dirty write occurs if some transaction T1 first updates an object x,
and another transaction T2 is allowed to write x before T1 is terminated.

17

Strictly according to this definition, WICE-SI does not protect against dirty writes: A transaction T2 can
update an object previously written by T1 at some site s as soon as T1 is known as Ti’s updates are applied at s.

But when studying the possible harmful consequences of dirty writes given in [5], we see that none of
them really apply to our case: (1) Dirty writes complicates undo-logging. Consider the history w1(x)w2(x)a1.
Here, restoring T1’s before-image would delete T2’s updates. But this problem does not apply to our setting,
as we have the following assertion: As soon as a transaction T1 is certified, it can only abort in the case that all
sites hosting T1 fails. Consequently, T1 could not fail unless T2 fails as well. And as we assume that sites do
not recover after failures, this is not an issue with our protocol. (2) Two transactions might write two objects
in different order, i.e. w1(x)w2(x)w1(y)c2w1(y)c1. But since updates are applied in certification order, this
situation cannot occur here. Consequently, we claim that WICE-SI provides protection against dirty writes
without explicitly forbidding them.

A dirty read is described by the sequence w1(x)...r2(x)...(c1 or a1)[5]. Again, this is not strictly forbidden
by our protocol, as the updates of T1 may be available to other transaction long before it is stable and allowed to
commit. But as noted in Section 4, T2 is not allowed to commit until T1 is stable. Thus, we ensure consistency
by requiring that if T1 aborts, T2 must also be aborted. This is usually denoted cascading aborts, and is regarded
as a problem. But T1 can only be aborted by a site failure, in which T2 would be aborted as well. Thus, we
claim that WICE-SI protects against dirty reads.4

Cursor lost update and lost update are executions on the form r1(x)...r2(x)...w1(x)...w2(x)...c1[5]. In
this case, the updates performed by T1 are unknown by T2, and are consequently “lost”. This is avoided if we
require that for any pair of transactions updating a common object, one of them must see the other’s updates.

In both modes, this is ensured by the validation procedure: Without loss of generality, assume that T2 is
submitted for certification after T1. If T2’s write-set intersects with T1, one requirement for validating T2 is that
it has seen T1’s updates (and this is easily determined by the version-timestamp assigned by the initiator of T2,
see line 6 of Figure2). Consequently, lost updates can never happen.

A fuzzy read occurs when a transaction T1 reads an object x which is updated by another transaction T2

before T1 has finished execution. In [5], this is described by the following pattern: r1(x)...w2(x)...(c1 or a1).
From the description and example given in [5], it is clear that what matters is whether T2 is allowed to update
T1 before the latter has executed its operations, regardless of when it commits. This distinction may not be im-
portant in a centralized database, but in our setting it is significant, as we want to allow concurrent transactions
access before commit.

In either case, T1 is only allowed to read from certified transactions by the local DBMS, and any updates
applied after T1 is initiated are hidden. Consequently, WICE-SI protects against fuzzy read.

A phantom read can happen if transaction T1 executes a statement containing a query with a predicate P ,
and another transaction T2 executes an insert, update or delete-operation such that the set of objects matching
P is changed. This can lead to inconsistency, for instance if T1 later executes a similar query on P .

In [5], the pattern r1(P)...w2(y in P)...(c1 or a1) is used to describe this scenario.
It is clear that some phantom-problems are handled by the local DBMS at each site, since if T1 re-executes

a query on P at the initiator, it will read from the snapshot and thus return the same set of tuples. But as pointed
out in [5], another potential problem is if two transactions T1 and T2 both run predicate reads and update distinct
objects. Given an execution on the form r1(P)...r2(P)...w1(x in P)...w2(y in P), inconsistency could arise if
the values written to x and y depend on the set of tuples returned by the previous queries. This is not handled
by our protocol (and can happen regardless of whether T1 and T2 has the same initiator). But as stated by [5],
this concurrency phenomenon is allowed by snapshot isolation.5.

Read skew is described by [5] as executions on the form r1(x)...w2(x)...w2(y)...c2...r1(y)...(c1ora2).

4One can argue that this approach will cause more cascading aborts among read-only transactions, as these could avoid blocking by
reading from an older snapshot, and thus might commit before the failure occurs. If supported by the local DBMS, read-only transaction
might then be assigned a committed-snapshot, as opposed to certified-snapshot to avoid blocking queries unneccessary.

5As stated by [13], this phenomenon is an example of a predicate-based write skew. Thus, one can say that snapshot isolation
protects against all phenomena except write-skew and predicate-based write-skew

18

The problem pointed out is that the state returned by T1 may be inconsistent, as it reads one of T2’s updates but
not the other.

Note that this can only happen if T1 and T2 have the same initiator (as we assume full replication, read-
operations are only issued at the initator). As snapshot isolation dictates that T1 can only read from transactions
that where certified when it began executing, this situation can never occur.

A write-skew may occur if two transaction T1 and T2 reads two objects x and y, and subsequently updates
one each. The general definition, as given by [5], is r1(x)...r2(y)...w1(y)...w2(x)...(c1 and c2 in any order).
It is well known that snapshot isolation does not protect against this phenomenon, and consequently, neither
does WICE-SI.

Based on the discussion above, we claim that WICE-SI provides snapshot isolation as it protects against all
phenomena except write skew and phantoms, i.e. the same isolation as in one-copy SI.

19

