
Revisiting Epsilon Serializabilty to improve the Database State Machine
(Extended Abstract)∗

A. Correia Jr. A. Sousa L. Soares F. Moura R. Oliveira
Universidade do Minho

1 Introduction

Recently, a large body of research has been exploiting
group communication based techniques to improve the de-
pendability and performance of synchronously replicated
database systems [8, 7, 13, 9]. Database replication based
on group communication appears as a promise to over-
come the scalability and performance problems of tradi-
tional strong consistency protocols, reducing the interac-
tions among the replicas and eliminating deadlocks.

Protocols such as those presented in [8, 7, 13, 9], and
in particular the Database State Machine (DBSM), allow a
transaction to be executed at any site and postpone the in-
teraction among distributed concurrent transactions, which
can be seen as an optimistic execution. Upon receiving the
commit request, they propagate relevant information of the
transaction to all replicas. If conflicts arise among concur-
rent transactions, the order in which the transactions were
delivered is used to decide which of them commit or abort.
The transaction propagation relies on an atomic multicast
primitive [6] which guarantees that the sequence of transac-
tions is the same at all non-faulty replicas.

Unfortunately, the optimistic execution of transactions
combined with the strictness of the serializability consis-
tency criterion [2] adopted in the DBSM may lead to a
considerable number of aborts. In this paper, we investi-
gate how to relax the consistency criteria of DBSM in a
controlled manner according to the Epsilon Serializability
(ESR) concepts [16] and evaluate the direct benefits in terms
of performance.

Basically, ESR relies on the assumption that some trans-
actions may tolerate a certain degree of imprecision to im-
prove the overall performance. It allows controlled incon-
sistencies using a framework that can be in part applied re-
gardless of the application semantics. For instance, a trans-
action that retrieves a warehouse’s amount of sales may ac-
cept a value that does not represent the amount in the last
millisecond but some value in the last couple of seconds.

∗ Research funded by FCT, STRONGREP project (FCT POSI / CHS /
41285 / 2001).

To evaluate the benefits of our approach, we use a work-
load based on the TPC-C [15] benchmark annotating the
transactions with the allowed degree of inconsistency.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the concepts behind ESR. In Section 3,
we introduce the DBSM and show how it can be augmented
in order to incorporate the ESR concepts. In Section 4, we
present a set of experiments conducted in order to evaluate
our approach. In Section 5, we conclude the paper.

2 Epsilon Serializability

2.1 Motivation

Serializability (SR) [2] defines the standard notion of
correctness in transaction processing. Roughly speaking,
the execution of concurrent transactions is serializable if it
produces the same output and has the same effect on the
database as some serial execution of the same transactions.
In replicated databases, the databases should behave like a
single database, the standard notion of correctness is called
one-copy serializability (1SR), which means that the inter-
leaved execution of the transactions must be equivalent to a
serial execution of those transactions on a single database.

Unfortunately, this criterion may be sometimes too re-
strictive when considering a high number of concurrent
transactions. It may lead to reduce the overall performance
and the effective number of concurrent transactions [5].
Databases usually provide the serializability model as a
possible isolation level [1] along with others which can be
used to relax the consistency criterion and as a way to im-
prove performance. For instance, one could use a “read
uncommitted” isolation level, allowing the transaction to
read uncommitted data and produce unbounded inconsis-
tent results. Specifically, in the case of read-only transac-
tions, some databases provide a “snapshot” isolation level
or “multi-version”. 1 Generally speaking, the database guar-
antees that the transaction reads data from a snapshot of the

1The “Snapshot” isolation level is actually a “multi-version” concur-
rency control algorithm [4].

1



ImpLimit ExpLimit

T = 0 = 0
Qε

≥ 0 = 0
U ε = 0 ≥ 0

Table 1. Epsilon Transactions

Qε U ε

r
U ε

w

Qε AOK AOK LOK-1
U ε

r
AOK AOK -

U ε

w
LOK-2 - -

Table 2. Lock Compatibility

committed data at the time it starts, which means that com-
mitted data produced during the execution is not visible. In
contrast with the choice of the “read uncommitted” isolation
level and other levels, the snapshot isolation level presents a
stronger criterion. Unluckily, the snapshot isolation level or
multi-version concurrency control policies are not available
in most databases [2, 4].

2.2 Protocol Overview

In order to alleviate or even overcome these limitations,
ESR relies on the assumption that some transactions may
tolerate a certain degree of imprecision to improve per-
formance and, as a consequence, reduce the number of
aborts. It allows limited and controlled inconsistencies us-
ing a framework that can in part be applied regardless of
the application semantics. For instance, a transaction that
retrieves the amount of sales of a warehouse may accept a
value that does not represent the amount in the last millisec-
ond but some value in the last couple of seconds.

ESR suggests the following steps: (i) to annotate the
transactions using a declarative language to state the incon-
sistencies allowed; (ii) to enhance the concurrency control
mechanism (CC) to guarantee that inconsistencies are be-
low the annotated limit for each transaction and (iii) to take
the appropriate actions if the limit was reached. In what
follows, we consider a CC mechanism based on the strict
two-phase locking [2].

Transactions are annotated as depicted in Table 1. For
read-only epsilon transactions, denoted Qε, we declare the
inconsistency that each transaction can import. This is ex-
pressed as the ImpLimit variable. For update epsilon trans-
actions, U ε, we declare the inconsistency that the transac-
tion can export. That is, the degree of interference it can
inflict on read-only transactions. This is expressed as the
ExpLimit variable.

Similarly to a CC mechanism, a divergence control
mechanism (DC) is used to ensure an ESR execution. It
can be built systematically augmenting the CC mechanism.

Table 2 presents the lock acquisition behavior for the ESR
model. At the left (in white) are the locks we want to
acquire and at the top (in grey) the locks that have been
granted. An epsilon update transaction U ε is divided in two
components: a read (U ε

r ) and a write (U ε
w). The expres-

sion AOK is used when the locks are always compatible,
which means that different transactions that attempt to ac-
quire these locks on the same data item always have their re-
quests granted. Dashes represent incompatible locks, which
means that different transactions cannot have these locks at
the same time on the same data item. LOK means that the
locks can be granted depending on the limits of inconsisten-
cies.

In the SR model, when a data item has a write lock and
a request from another transaction to read the same item
arrives, the request blocks because the locks are incompati-
ble. In the ESR model, the lock may be granted (LOK−1),
which means that it allows the transaction to read uncom-
mitted data. In the SR model when a data item has one
or more read locks and a request from another transaction
to update the same item arrives, the request blocks because
the locks are incompatible. In the ESR model, the lock may
be granted (LOK − 2), which means that updates can over-
write data that is being read by the queries.

The DC mechanism must act as follows to evaluate if it is
possible to grant the non-SR locks. First, it must define for
each Qε a variable that accumulates the amount of inconsis-
tency imported, e.g. acum.ImpLimit, and for each U ε a vari-
able that accumulates the amount of inconsistency exported,
e.g. acum.ExpLimit. In the case of LOK−1, the DC mech-
anism must check if the inconsistency does not force Qε to
exceed its limit, i.e. ImpLimit ≤ acum.ImpLimit , or
U ε to exceed its limit, i.e. ExpLimit ≤ acum.ExpLimit.
If both limits are not exceeded the lock is granted, otherwise
it is not. In the case of LOK − 2, the DC mechanism must
also take into account that the read locks can be granted for
more than one Qε and hence the DC mechanism must com-
pute the limits for each Qε.

Each transaction may have different variables to define
limits, expressing the number of non-SR conflicts, abso-
lute values (e.g., the tolerated imprecision in the amount of
products in stock) and the age of the information (i.e., the
time interval that a epsilon-transaction can process using
stale information). If a limit was defined based on the num-
ber of non-SR conflicts, the DC mechanism would simply
increment a counter to express the conflict. If it was de-
fined based on absolute values, the increment of the accu-
mulators would take into account the absolute differences
between the data item before and after the update. In the
case of the age of the information, Qε does not exceed the
specified limit if ImpLimit+firstT ime ≤ now(), where
firstT ime represents the first time that the transaction read
uncommitted data and now() represents current time. This

2



test must be applied upon requesting commit, which means
that the age implies the time interval that Qε could execute
using stale data. If the expression evaluates to false, Qε

must abort. For the age information, U ε’s ExpLimit can
be set to ∞, since the amount of inconsistency exported is
not considered in this case because the test is applied just
upon requesting commit.

2.3 Update Transactions

In order to further improve performance and further re-
duce the number of aborts, it would be interesting to al-
low update transactions to import inconsistency. How-
ever, in this case, the DC mechanism itself is not suffi-
cient to guarantee a consistent state of the database since
it can only limit inconsistencies in the scope of a single
epsilon-transaction. Successive epsilon-transactions may
compound the inconsistency on particular data items and
therefore introduce an arbitrarily large divergence. In [12],
it studies the divergence problem and proposes two types
of consistency restoration techniques: compensation-based
and independent updates. For the sake of completeness,
we briefly present the intuition behind the restoration tech-
niques. However, our approach does not currently encom-
pass update transactions to import inconsistency. Further
details can be found in [12, 3, 11, 10].

Compensation-based techniques attempt to restore state
consistency by undoing transactions and, afterwards,
rescheduling these transactions in such a manner that it min-
imizes the number of aborts. This approach is undesirable
to our goals since the assumption of being able to redo or
compensate external effects is often impractical. Further-
more, this technique usually requires knowledge about the
application semantics to define the compensation activities
and to reschedule the transactions. In [11], it is presented
an approach that automatically extracts information from
transactions in order to correctly reschedule them and there-
fore reduce the number of aborts.

The independent updates technique borrows heavily
from reservation techniques. Reservation techniques basi-
cally attempt to avoid conflicts [10].

3 Epsilon serializability and the DBSM

The Database State Machine [8] is based on the deferred
update replication technique [2] which reduces the need for
distributed coordination among concurrent transactions dur-
ing their execution. A transaction is locally synchronized
at the database where it initiated according to some CC
mechanism [2]. From a global point of view, the transac-
tion execution is optimistic since there is no coordination
with any other database site possibly executing some con-
current transaction. Interaction with other database sites

on behalf of the transaction only occurs when the commit
is requested, i.e. when t enters the committing state. At
this point, a termination protocol is started: i) the transac-
tion’s relevant information is atomically propagated to all
database sites, and ii) each database site certifies the trans-
actions determining its fate: commit or abort.

In order for a database site to certify a committing trans-
action t the site must be able to determine which transac-
tions conflict with t. A transaction t′ conflicts with t if: i) t

and t′ have conflicting operations and ii) t′ does not precede
t.

Two operations conflict when they are issued by different
transactions, access the same data item and at least one of
them is a write operation.

The precedence relation between transactions t and t′ is
denoted t′ → t (i.e., t′ precedes t) and defined as: i) if t

and t′ execute at the same database site, t′ precedes t if t′

enters the committing state before t; or ii) if t and t′ exe-
cute at different sites, for example si and sj , respectively, t′

precedes t if t′ commits at si before t enters the committing
state at si.

From a global point of view, the DBSM uses the certifi-
cation procedure as a CC mechanism. However, a read-only
transaction (Qε) is entirely handled locally and does not in-
terfere with remote transactions, which means that remote
transactions are not certified against local transactions. In
contrast with that, a remote transaction that was committed
must locally store information, which is done atomically ac-
quiring the necessary locks and afterwards updating it. Cer-
tainly, the remote transactions interfere with local running
transactions and usually as a consequence the local trans-
actions are aborted. To augment the DBSM with the ESR
model for Qε transactions, we need to only adjust the local
CC mechanism accordingly to Section 3.

We can proceed as follows:2 During lock acquisition, the
local DC mechanism verifies if the inconsistency introduced
by any transaction committed since Qε began does not force
Qε to exceed its limits, i.e. ImpLimit ≤ acum.ImpLimit

, or the remote U ε to exceed its limits, i.e. ExpLimit ≤

acum.ExpLimit. If both limits are not exceeded the local
Qε can continue and the U ε can update the database. Oth-
erwise, it aborts the local Qε.

4 Experiments

To evaluate our approach, we used a simulation tool that
combines real and simulated code allowing us to test pro-
totypes early and with great flexibility. Specifically, the
database, the clients and the network are simulated. The

2Besides the solution based on the ESR, it would be possible to wait
until the conclusion of the Qε. However, in this case, we could introduce
an arbitrary latency in the system which might not be desirable.

3



group communication and the DBSM protocols are real im-
plementations.

The simulated system consists of 9 database sites which
communicate through a LAN with an average bandwidth of
1 Gbps and 1 ms of latency. Each site has a single proces-
sor comparable with a Pentium III at 1 GHz and a storage
with 9.5 MBps of throughput for blocks of 4 KB. Each site
has a full replica of the database. Clients are uniformly dis-
tributed across 3 of the database sites.

The application profile used is based on TPC-C [15],
the industry standard on-line transaction processing bench-
mark. TPC-C mimics a wholesale supplier with a number
of geographically distributed sales districts and associated
warehouses. It has the following relations: (i) warehouse,
(ii) district, (iii) customer, (iv) stock, (v) orders, (vi) order
line, (vii) history, (viii) new order and (ix) item.

The traffic is a mixture of read-only and update inten-
sive transactions. A client can request five different trans-
actions types as follows: New Order, adding a new order
into the system (with 44% probability of occurrence); Pay-
ment, updating the customer’s balance, district and ware-
house statistics (44%); Order Status, returning a given cus-
tomer latest order (4%); Delivery, recording the delivery of
products (4%); Stock Level, determining the number of re-
cently sold items that have a stock level below a specified
threshold (4%).

Notice that, according to TPC-C, an additional ware-
house should be configured for each additional 10 clients.
The initial size of tables depends on the number of con-
figured clients. Notice also that the TPC-C is being used
only as the basis for a realistic application scenario in or-
der to evaluate our approach and not as a benchmark. The
constraints required for throughput, performance, response
time, screen load and background execution of transactions
are not considered here and thus the results are not compa-
rable with other system results obtained with TPC-C.

In what follows, we show how the ESR can improve the
performance of the TPC-C transactions and also reduce the
abort rate. Transactions are annotated with the amount of
conflicts tolerated. For a detailed description and evaluation
of the simulation tool the reader is referred to [14].

Figure 1 depicts the results obtained. We ran a set of
simulations with strict two-phase locking for the serializ-
able model (SR), with an extended version of the strict two-
phase locking for the ESR model (ESR), and with multi-
version concurrency control (MV). For each set of exper-
iments we varied the number of clients from 250 to 1000
and measured the abort rate (Figure 1(a)), the latency (Fig-
ure 1(b)) and the throughput of the system (Figure 1(c)). For
the ESR runs in Figures 1(a), 1(b) and 1(c), we assumed no
limits on the amount of allowed inconsistency that could be
imported.

Figure 1(a) shows the abort rate exhibited by the four set

of runs. In the DBSM, aborts may result from conflicts be-
tween local transactions or from conflicts arising from the
certification of remote transactions. Due to the strong lo-
cality of the TPC-C workload and its way of distributing
the clients among the sites, operations that access informa-
tion from remote warehouses represent less than 10% and,
therefore, aborts of transactions due to certification tend to
be negligible. As such, the aborts constituting the graph
of Figure 1(a) correspond to local transaction conflicts (i.e.,
write-write conflicts) and, as expected, can only arise when
using a multi-version CC mechanism. With both strict two-
phase locking CC or the DC mechanism, write locks need
to be acquired and conflicting transactions block instead of
a posteriori abort.

Figure 1(b) shows the latency as observed by the clients.3

Up to 750 clients, the latency of the system is kept very low
and any differences among the experiments are absorbed by
variance. With more than 750 clients, SR presents the high-
est latency which is explained by the contention introduced
with locking. The advantage of using epsilon serializabil-
ity directly translates on latency. In the ESR runs, for 1000
clients, a gain of around 40% is obtained with respect to
SR. This, however, shall be regarded as a lower bound on
latency for epsilon serializability applied to read-only trans-
actions as we are admitting unbounded inconsistency here.

Figure 1(c) shows a indistinguishable performance of the
considered CC mechanisms regarding throughput. It is no-
ticeable a reduction on performance above 750 clients for
all set of experiments. However, the think-time and keying-
time constraints imposed by the TPC-C [15] conceal any
performance differences that could be yielded by differ-
ences on the latency of the different CC approaches.

Finally, in Figure 1(d) we vary the number of allowed
conflicts. Until 750 clients, the values are quite similarly
since there is no contention problems. Above this value, the
ESR - E999 (i.e., Qε and U ε tolerate 999 non-SR conflicts)
presents values similar to unlimited ε (Figure 1(b)). Reduc-
ing the number of allowed conflicts increases latency and
the ESR - E001 (i.e., Qε and U ε tolerate 1 non-SR conflicts)
is identical to SR.

5 Conclusion

This paper presents early results on the use of Epsilon
Serializability (ESR) [16] to stretch the consistency criteria
of the DBSM in order to improve its performance. Basi-
cally, ESR relies on the assumption that some transactions
may tolerate a certain degree of imprecision to improve per-
formance or to reduce the number of aborts.

We have conducted a set of experiments using TPC-
C [15] as workload. Our results show that indeed ESR can

3For both latency and throughput measurements, only committed trans-
actions were taken into account.

4



0

0.5

1

1.5

2

2.5

250 500 750 1000

A
bo

rt 
R

at
e 

(%
)

Clients

SR
ESR R

MV

(a) Abort rate

300

600

900

1200

1500

1800

250 500 750 1000

La
te

nc
y 

(m
s)

Clients

SR
ESR R

MV

(b) Latency

1000
1500
2000
2500
3000
3500
4000
4500
5000

250 500 750 1000

TP
M

 (C
om

m
itt

ed
)

Clients

SR
ESR R

MV

(c) Throughput

300

600

900

1200

1500

1800

250 500 750 1000

La
te

nc
y 

(m
s)

Clients

SR
ESR E999
ESR E100
ESR E010
ESR E001

MV

(d) Latency - Conflicts

Figure 1. Performance

be used in a controlled and consentaneous way, establishing
a trade-off between consistency and performance. Varying
the number of conflicts, allowing the read of stale data, we
managed to reduce transaction latency up to 40%. As ex-
pected, for the epsilon transactions, latency is up bounded
by strict locking policies and bottom bounded by multi-
version concurrency control. In contrast with multi-version,
epsilon serializability eliminates the aborts generated by
write-write conflicts.

The next step on this work will be the support of reserva-
tion techniques to allow to stretch the consistency of update
transactions.

References

[1] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, and P. O’Neil. A Critique of ANSI SQL
Isolation Levels. In ACM SIGMOD International
Conference on Management of Data, 1995.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Con-
currency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[3] P. Drew and C. Pu. Asynchronous consistency restora-
tion under epsilon serializability. Technical report,
Department of Computer Science, Hong Kong, Uni-
versity of Science and Technology., 1993.

[4] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
Technical report, NSF Grant IRI 97-11374, 2004.

[5] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The
Dangers of Replication and a Solution. In ACM SIG-
MOD International Conference on Management of
Data, 1996.

[6] V. Hadzilacos and S. Toueg. A Modular Approach
to Fault-Tolerant Broadcasts and Related Problems.
Technical report, Cornell University, 1994.

[7] B. Kemme and G. Alonso. A Suite of Database
Replication Protocols Based on Group Communica-
tion Primitives. In IEEE International Conference on
Distributed Computing Systems, 1998.

[8] F. Pedone. The Database State Machine and Group
Communication Issues. PhD thesis, Département
d‘Informatique, l’École Polytechnique Fédérale de
Lausanne, 1999.

[9] R. Jiménez Peris, M. Patiño Martínez, B. Kemme,
and G. Alonso. Improving the Scalability of Fault-
Tolerant Database Clusters. IEEE International Con-
ference on Distributed Computing Systems, 2002.

[10] N. Preguiça, J. Martins, M. Cunha, and H. Domin-
gos. Reservations for Conflict Avoidance in a Mobile
Database System. In Proceedings of The First Inter-
national Conference on Mobile Systems, Applications,
and Services, 2003.

5



[11] N. Preguiça, M. Shapiro, and J. Martins. SQLIceCube:
Automatic Semantics-base Reconciliation for Mobile
Databases. Technical report, Instituto Superior Téc-
nico, Lisboa, Portugal, 2003.

[12] C. Pu. Generalized transaction processing with
epsilon-serializability. In Proceedings of Fourth Inter-
national Workshop on High Performance Transaction
Systems, 1991.

[13] A. Sousa, F. Pedone, R. Oliveira, and F. Moura. Partial
Replication in the Database State Machine. In IEEE
International Symposium on Network Computing and
Applications, 2001.

[14] A. Sousa, J. Pereira, L. Soares, A. Correia Jr.,
L. Rocha, R. Oliveira, and F. Moura. Testing the De-
pendability and Performance of GCS-Based Database
Replication Protocols. Technical report, Departa-
mento de Informática, Universidade do Minho, 2004.

[15] Transaction Processing Performance Council (TPC).
TPC benchmark C Standard Specification Revision
5.0, 2001.

[16] K. Wu, P. Yu, and C. Pu. Divergence control for
epsilon-serializability. In Proceedings of 8th Interna-
tional Conference on Data Engineering, 1992.

6


