
Improving Logical Clocks in Riak with Dotted
Version Vectors: A Case Study

Ricardo Gonçalves, Paulo Sérgio Almeida, Carlos Baquero, Victor Fonte, and
Nuno Preguiça

1 Universidade do Minho
2 Universidade Nova de Lisboa,

{tome,psa,cbm,vff}@di.uminho.pt
3 nmp@di.fct.unl.pt

Abstract. Major web applications need the partition-tolerance and avail-
ability of the CAP theorem for scalability purposes, thus some adopt the
eventual consistent model, which sacrifices consistency. These systems
must handle data divergence and conflicts that have to be carefully ac-
counted for. Some systems have tried to use classic Version Vectors to
track causality, but these reveal either scalability problems or loss of
accuracy if pruning is used to prevent growth.
Dotted Version Vectors is a mechanism that deals with data versioning
in eventual consistent systems, which allows accurate causality tracking
and scalability, both in the number of clients and servers, while limiting
vector size to replication degree.
However, theories can abstract too much of the hiding properties which
difficult the implementation. We discuss the challenges faced when im-
plementing Dotted Version Vectors in Riak - a distributed key-value
database -, evaluate its behavior and performance, discuss the tradeoffs
made and provide further optimizations.

Keywords: Databases, Causality, Eventual Consistency, Logical Clocks,
Scalability, NoSQL, Riak

1 Introduction

There is a new generation of databases on the rise, which are rapidly gaining pop-
ularity due to increasing scalability concerns. Typically these distributed systems
have restrictions placed in Consistency, Availability and Partition-Tolerance of
the CAP theorem [2]. They were grouped in a new broad class of databases called
NoSQL (Not Only SQL). Examples of databases are Google’s BigTable, Ama-
zon’s Dynamo, Apache’s Cassandra (based on Facebook’s version) and Basho’s
Riak 4. Instead of providing the ACID properties, they focus on implementing
what it is called a BASE (Basically Available, Soft state, Eventually consistent)
system [9]. A BASE system has weaker consistency model, focuses on avail-
ability, uses optimistic replication, thus makes it faster and easier to manage

4 http://wiki.basho.com/Riak.html

http://wiki.basho.com/Riak.html


large amounts of data, while scaling horizontally. As the CAP theorem says, we
can only have two of the three properties that it describes. Since virtually all
large-scale systems must have partition tolerance, to account for hardware and
networks faults, NoSQL databases focus on the CP for strong consistency, AP
for high availability, or adjustable systems.

Systems like Riak or Cassandra [5] adopt an Eventual Consistency model
that sacrifices data consistency to achieve high availability and partition toler-
ance. This means that eventually, all system nodes will be consistent, but that
might not be the true at any given time. In such systems, optimistic/aggressive
replication is used to allow users to both successfully retrieve and write data
from replicas, even if not all replicas are available. By relaxing the consistency
level, inconsistencies are bound to occur, which have to be detected with min-
imum overhead. This is where Logical Clocks, introduced by Lamport [6], are
useful. Logical clocks are mechanisms for tracking causality in distributed sys-
tems. Causality is the relationship between two events, where one could be the
consequence of the other (cause-effect) [7,4]. Due to constraints in global clocks
and shared memory in distributed systems, these mechanisms are used for cap-
turing causality, thus partial ordering events. It is partial because sometimes two
events cannot be ordered, in which case they are considered concurrent. While
some systems have tried to use classic Version Vectors (VV) [1] to track causal-
ity, they do not scale well or lose accuracy by pruning the vector to prevent its
growth. Dotted Version Vectors (DVV) [8] is a novel logical clock mechanism,
that allows both accurate causality tracking and scalability both in the number
of clients and servers, while limiting vector size to replication degree.

From a theoretical and abstract point of view, DVV are an evolution of VV,
more scalable and flexible. But in engineering, not everything that seems concep-
tually better, translates into better results. The main purpose of this paper is to
implement DVV in a real database, proving that it can be done without major
architectural changes. Moreover, we then evaluate this new implementation with
the original database and discuss their tradeoffs.

In Section 2 we provide a background in Riak and DVV that is necessary
to better comprehend this paper. We explain the basics of Riak, its current
logical clock implementation, the classical alternatives, their shortcomings, and
finally we describe briefly the DVV mechanism. Next, in Section 3 we present the
major changes that had to be done, while implementing DVV in Riak. Section 4
is where the evaluation and benchmarking of this implementation can be found.
Finally, we provide conclusion and future work in Section 5.

2 Background

To understand the state of logical clocks in Riak, let us describe its basic compo-
nents in this context, namely replication, system interface and data versioning.
We discuss the current logical clock mechanism (VV), its shortcomings and we
then briefly present an alternative: DVV - we describe in which way they differ
from traditional VV.



2.1 Logical Clocks in Riak

Riak5 is developed by Basho Technologies and is heavily influenced by Eric
Brewer’s CAP Theorem and Amazon’s Dynamo [3]. Written mostly in Erlang,
with a small amount of Javascript and C, it is a decentralized, fault-tolerant
key-value store, with special orientation to document storage. Being heavily in-
fluenced by Dynamo, Riak adopts the majority of its key concepts. Being a truly
fault-tolerant system, it has no single point of failure, since no machine is special
or central. Next, a brief description of some relevant Riak areas.

Replication Inspired by Dynamo, Riak uses the same ring concept for replica-
tion. Consistent hashing is used to distribute and organize data. This Riak ring
has a 160-bit space size, and by default has 64 partitions, each represented by
virtual nodes (vnodes). Vnodes are what manages client’s requests, like puts e
gets. Each physical node can have several vnodes, depending both on the num-
ber of partitions the ring has and the number of physical nodes. The average
number of vnodes per node can be calculated by (number of partitions)/(number
of nodes). Vnodes positions in the ring are attributed at random intervals, to
attempt a more evenly distribution of data across the ring. By default, the repli-
cation factor (n val) is 3 (i.e., 3 replica vnodes per key). Also, the number of
successful reads (R) and writes (W) are by default a quorum number (greater
than n val/2), but can be configured depending on the consistency and avail-
ability requirement levels.

System Interface In Riak, all requests are perform over HTTP by RESTful
Web Services. All requests should include the X-Riak-ClientId header, which can
be any string that uniquely identifies the client, to track object modifications
with Version Vectors (VV). Additionally, every get request provides a context,
that is meant the be given back (unmodified) in a subsequent put on that key.
A context contains the VV.

Data Versioning Riak has two ways of resolving update conflicts on Riak
objects. Riak can allow the most recent update to automatically “win” (using
timestamps) or Riak can return/store (depends if it is a get or PUT, respec-
tively) all versions of the object. The latter gives the client the opportunity to
resolve the conflict on its own. This occurs when the allow mult is set to true
in the bucket properties. When this property is set to false, there is a silent
loss update possibility, e.g., when two clients write to the same key concurrently
(almost at the same time), one of the updates is going to be discard. Hereafter,
assume that allow mult is always true.

Lets describe two fundamental concepts in Riak:

– Riak Object: A riak object represents the value in the key-value tuple, i.e.,
it contains things like metadata, the value(s) itself, the key, the logical clock,
and so on. So, from now on, object is the riak object and value or values

5 The description and tests performed on this paper are based on Riak version 0.13



are the actual data of an object that being stored, e.g., a text, a binary, an
image, etc.

– Sibling: A sibling (concurrent object) is created when Riak is unable to
resolve the request automatically. There are two scenarios that will create
siblings inside of a single object:
• A client writes a new object that did not come from the current local

object (it is not a descendent), conflicting with the local object;
• A client writes a new object without context, i.e., without a clock.

Riak uses VV to track versions of data. This is required since any node is able
to receive any request, even if not replica for that key, and not every replica needs
to participate (being later synchronized via read-repair or gossiping). When a
new object is stored in Riak, a new VV is created and associated with it. Then,
for each update, VV is incremented so that Riak can later compare two object
versions and conclude:

– One object is a direct descendant of the other.
– The objects are unrelated in recent heritage (the client clock is not a descen-

dent of the server clock), thus considered concurrent. Both values are stored
in the resulting object, while both VV are merged.

Using this knowledge, Riak can possibly auto-repair out-of-sync data, or at
least provide a client with an opportunity to reconcile divergent objects in an
application specific manner.

Riak’s implementation of VV tracks updates done by clients instead of track-
ing updates “written” or handle by nodes. Both are viable options, but what
Riak’s approach provides is what clients updated the object (and how many
times), in contrast to what nodes updated the object (and how many times).
Specifically, VV are a list of number of updates made per client (using X-Riak-
ClientId), like this: [{client1, 3}, {client2, 1}, {client3, 2}]. This VV would indi-
cate that client1 updated the object 3 times, client2 updated the object 1 time,
and client3 updated the object 2 times. Timestamp data is also stored in the
VV but omitted from the example for simplicity. The reason to use client IDs
instead of server-side IDs in VV, is because the latter can cause silent update
losses, when two or more clients concurrently update the same object on the
same node [8].

There is a major difference between this and the traditional approach of using
using the node’s IDs, because the number of clients tends to be much greater
than the actual number of nodes or replicas. Therefore, the VV would grew in
size much faster, probably in an unacceptable way (both size and performance).
The solution Riak adopted was to prune VV as they grow too big (or to old), by
removing the oldest (timestamp wise) information. The size target for pruning is
adjustable, but by default it is between 20 and 50, depending on data freshness.
Removing information will not cause data loss, but it can create false conflicts.
For example, when a client holds an object with an old unpruned VV and submits
it to the server, where the clock was pruned, thus creating conflict, where it
should not have happened.



In short, the tradeoff is this: prune to keep the size manageable, thus letting
false conflicts happen. The probability of false conflict happening should not be
neglected. For example, by having a large number of clients interacting with a
specific object, VV can rapidly grow, thus forcing the pruning. This can lead to
cases where clients have to solve false conflicts, which could be later resolved in
a not so correct way, i.e., if the value that “wins”, is in fact the one that would
have been removed if pruning was not applied.

2.2 Dotted Version Vectors

While pruning clocks creates false conflicts, DVV prevents unbounded size growth
using server-side IDs, thus eliminating the need to prune old data. But we have
also said that VV with server-side IDs can cause silent updates. DVV has the
same structure as VV, but addresses conflicts in a different way, by having a
special case in the vector, when concurrency occurs. If a conflict is detected, the
pair that should be updated is transformed to a triple (figure 1 is an example
of a possible clock increment when a conflict is detected), which conflicts with
the server version. So, what this accomplishes is a representation of concurrency
created by two or more writes in the same key on the same node. For more
details on this, see the DVV paper [8].

Fig. 1. A possible clock increment using DVV. Unlike VV, DVV allows non-contiguous
increments in one ID per clock.

3 Implementing DVV in Riak

The first thing to be done was to implement DVV in Erlang, the programming
language that Riak is written. It is a single file, that contains all the required



functions. This file was placed in Riak Core, where are all the files that give core
function to the system (e.g. Merkle Trees and Consistent Hashing). Then Riak
KV (i.e. Riak Key-Value), which has the code for running Riak, was modified
to use DDV instead of VV. This required some key changes to reflect the core
differences between DVV and VV. One of them was eliminating X-Riak-ClientId,
since we do not use the client ID anymore to update our clock. These are the
main changes, in the following files:

riak client Here we simply removed the line where the VV was previously
incremented in a PUT operation.

riak kv put fsm This file implements a finite-state machine, that encapsulates
the PUT operation pipeline. In the initial state, we first see if the current node
is a replica, and if not, we forward the request to some replica. Then, when a
replica node is the coordinator, we execute the PUT operation locally first. When
it is done, this replica provides the resulting object, with the updated clock and
value(s), which is sent to the remaining replicas, where they synchronize their
local object with this one.

riak kv vnode This is where the local put is done. A provided “flag” tells if
this node is the coordinator, and thus the one that should do the update/sync
to the clock. If this flag is false, the node will only sync the local DVV with the
received one. Otherwise, this node is the coordinator, therefore it will run the
update function with both new and local DVV, and the node ID. Then run the
sync function with that resulting DVV and local DVV. Finally, the coordinator
sends the results to replicas, but this time not as coordinators, thus they only
run the sync function between their local object and the object provided.

riak object This file encapsulates a Riak object, containing things like meta-
data, data itself, the key, the clock, and so on. Before, an object only had one
clock (one VV), even if there was more than one value (i.e. conflicting values).
When conflicts were detected, both VV were merged so that there was only one
new VV, which dominated both. This has an obvious disadvantage: the con-
flicting objects could only be resolved by a newer object. Even if by the gossip
between replicas, we found that we could discard some of the conflicting values
that were outdated, we could not. With DVV, we change this file so that each
value has its own clock. By discarding this redundant values, we are actually
saving space and simplifying the complexity of operations, since we manipulate
smaller data. It worth noting that this approach to have set of clocks instead of
a merged clock, could also be applied to VV. Since DVV was designed to work
with set of clocks, it was mandatory to change this aspect, which introduces a
little more complexity to the code, but has the advantages stated above.

4 Evaluation

In order to see if the performance was really affected, if there was savings in
metadata space (smaller clocks) and if false conflicts were really gone, we had to



evaluate this implementation. We executed performance benchmarks comparing
the original version and the DVV version. Additionally, other metrics like clock
size and conflicts, to provide some insight in what was happening and why. What
follows is a description of the benchmark tool, the setup, the results and finally
the tradeoffs.

4.1 Basho Bench

Basho Bench is a benchmarking tool created to conduct accurate and repeatable
performance and stress tests. This tool outputs the throughput (i.e. total number
of operations per second, over the duration of the test) and a range of latency
metrics (i.e. 95th percentile, 99th percentile, 99.9th percentile, max, median and
mean latency) for each operation. Basho Bench only requires one configuration
file. The major parameters that were used are:

– Duration: 20 min;

– Number of concurrent clients: 500;

– Requests per client: 1;

– Types of requests and their relative proportions: various (detailed later);

– Key Space: [0-50000];

– Key Access: Pareto distribution, i.e. 20% of the keys accessed 80% of the
time;

– Value Size: fixed 1KB or 5KB;

– Initial random seed was the same for all test, to ensure equal conditions to
both mechanisms, while achieve reproducible results;

– Number of replies (R and W for the read and write operations) = 2.

4.2 Setup

For these benchmarks we used seven machines, all in the same local network. A
Riak cluster running on 6 similar machines, while another independent machine
was simulating the clients. The request rates and number of clients were chosen
to try to prevent resource exhausting, since this would create unpredictable re-
sults. Resources were monitored to prevent saturation, namely CPU, disk I/O
and network bandwidth. We also used the default replication factor n val = 3.

The following types of requests were issued from clients:

– get: a simple read operation that returns the object of a given key;

– put: a blind write, where a value is written in a given key, with no causal
context supplied, i.e. without a clock. This operation will increase concur-
rency (create siblings) if the given key already exists, since an empty clock
does not dominate any clock, thus always conflicting with the local node
clock;



– upd: an update, that is expressed by a get returning an object and a context
(clock), followed by a 50 ms delay to simulate the latency between client and
server, and finally a put that re-supplies the context and writes a new object,
which supersedes the one first acquired in the get. This operation reduces
the possible concurrency (object with multiple values) that the get brought.

From these three core actions we evaluated two benchmarks that considered
different workload mixes. The first benchmark was to do a simple generic dis-
tribution load, with the proportion of blind puts kept at 10% and interchanged
proportions of 30% versus 60% for gets and updates. The size per value was fixed
at 1KB.

The second benchmark was to simulate TPC-W [10] workloads, using the
“Shopping Mix” (80% reads, 20% writes) with a fixed value size of 5KB, the
“Ordering Mix” (50% reads, 50% writes) and the “Browsing Mix” (95% reads,
5% writes), both with 1KB per value. Reads were done with the normal get
operation, while writes were done in upd.

4.3 Comparison of overall latency

Get Put Update Clock Values
Workload Clock Type Mean 95th Mean 95th Mean 95th Size per Key

(ms) (ms) (ms) (ms) (ms) (ms) (bytes) (average)

60% GET VV 7.65 15.9 5.71 10.1 14.4 24.0 790 1.34
10% PUT DVV 3.16 5.25 4.31 6.27 7.76 10.9 127 1.31
30% UPD DV V

V V 0.41 0.33 0.76 0.62 0.54 0.46 0.16 0.98

30% GET VV 10.4 21.6 7.48 13.8 18.8 31.9 859 1.20
10% PUT DVV 3.45 5.83 4.56 6.59 8.39 11.8 123 1.16
60% UPD DV V

V V 0.33 0.27 0.61 0.48 0.45 0.37 0.14 0.97
Table 1. DVV and VV benchmarks with a generic approach.

The first, generic, benchmark results are in table 1, while the TPC-W ap-
proach benchmark results are in table 2. Both tables show the DV V/V V ratio
that helps compare the two mechanisms, values smaller than 1.0 show an im-
provement and are depicted in bold.

In all tests we find that clock size is always (much) smaller in DVV, even
with the (default) pruning that occurs with Riak VV. One can also confirm that
pruning is occurring, because all the tests reveal that there were more concurrent
values in the VV case. The difference in the number of values per key between the
two logical clocks, results from false conflicts created by pruning. We recall that
since Riak VV resort to pruning they do not reliably represent concurrency, and
introduce false conflicts that need to be resolved. Having no pruning, our DVV
implementation accurately tracks concurrency, while still allowing an expressive



reduction of metadata size. It is easy to see that even if the default pruning
activation threshold was lowered in Riak VV case, although it would reduce
clock sizes, this would also lead to an increase of false concurrency and higher
numbers of values per key.

Regarding performance, the generic benchmark results show that using a
value payload of 1KB, the write and read operations were much better then
using VV. Having less conflicts, and factoring the smaller clock size, on average
operations transfer smaller data (1.8KB versus 1.2KB).

Get Update Clock Values
Workload Clock Type Mean 95th Mean 95th Size per Key

(ms) (ms) (ms) (ms) (bytes) (average)

VV 2.15 3.63 5.00 7.70 159 1.00081
Browsing DVV 2.01 3.49 5.70 8.80 89 1.00051

Mix DV V
V V 0.94 0.96 1.13 1.15 0.56 0.99970

VV 2.84 5.00 6.80 11.0 117 1.00066
Shopping DVV 2.77 4.94 7.70 12.8 82.0 1.00039

Mix DV V
V V 0.98 0.99 1.13 1.16 0.70 0.99973

VV 7.70 16.2 14.4 24.0 682 1.00549
Ordering DVV 2.95 4.76 7.40 10.0 113 1.00425

Mix DV V
V V 0.38 0.29 0.51 0.42 0.17 0.99877

Table 2. DVV and VV benchmarks with TPC-W approach.

In the TPC-W case, the first thing we can see is that concurrency (rate of
conflicts, measured by values per object) is very low, as it would be expected
in a more realistic setting (concurrency rates in Dynamo’s paper [3] are very
similar to these). Read operations were always better, or pretty even between
both mechanisms. This is to be expected since the read pipeline was not modified
by our implementation, but DVV is usually smaller, thus requiring less data to
be transferred.

Write operations were pretty good in the ordering mix, since (like the generic
approach) each value was 1KB and the difference in clock size was significant.
In contrast, the browsing mix also had 1KB per value, but the difference in
clock sizes was not very large (too few writes in 20 minutes for the VV clock to
grew significantly, but with time, it would probably grow much larger). Then, on
average, values with VV and DVV had 1.16KB and 1.09KB in size, respectively.
The same can be said of the shopping mix, in this case 5.12KB and 5.08KB for
the VV and DVV, respectively. Therefore, in the shopping mix and browsing
mix, the difference in clock size was not sufficient to make up for the changes
we had to made in the write pipeline. Simply put, using DVV in Riak, when
writing some value, the coordinator has to send every conflicting value to replicas.
Moreover, if the coordinator is not a replica for that key, then it has to forward
the write request to a new coordinator that is also a replica. In the standard



Riak implementation, the VV case, the write pipeline is simpler, only the new
client value is passed to replicas and every node can be a coordinator for any
write request.

4.4 Comparison of clock sizes

��

���

����

�����

������

�� ��� ���� ����� ������

�
��
�
�
��
�
��
��
�

�������������������������

���������������
����������������������������

����������������������

Fig. 2. Theoretical growth in clock size.

Figure 2 illustrates the theoretical effect of the number of writing clients in
the number of clock entries, and thus the overall clock size. DVV stabilizes in
size when the number of entries reaches the replication factor (usually 3), while
VV with id-per-client grow indefinitely. Thus, in practice, systems usually resort
to pruning to control its growth. In Riak’s case, the imposed limit to the number
of kept ids, and the trigger to pruning, is in the 20 to 50 range.

In Figure 3 we depict the evolution of the average clock size per key during
the execution of the TPC-W based benchmarks in the Riak cluster. Here we can
see that the DVV size becomes constant after a short time, whereas the Riak
VV size is constantly increasing until stabilizing somewhere close to 1KB in the
Ordering Mix case. Notice that it only stabilizes because of pruning in Riak VV,
if not that it would grow linearly. The other workloads using Riak VV did not
have enough time to stabilize, but would eventually be similar to the ordering
mix. DVV has more or less 3 entries per clock (N=3) and size of 100 bytes, thus
1000 bytes in average for each VV means that it has roughly 30 entries, in line
with the pruning range of Riak [20− 50].



��

����

����

����

����

����

����

����

����

����

�����

�� ���� ���� ���� ���� ����� �����

�
��
�
�
��
��
�
��
�
�
��
�
�

��������������

�����������

������������

�����������

������������

�����������

������������

Fig. 3. Real growth in clock size using TPC-W workload mixes.

4.5 Tradeoffs

Lets resume the advantages and disadvantages of using DVV instead of VV.
First, the advantages:

– Simplify API: since DVV uses the node’s internal 160-bit ID, there is
no need for clients to provide IDs, thus simplifying the API and avoiding
potential ID collisions;

– Save space: DVV are bounded to the number of replicas, instead of the
number of clients that have ever done a PUT. Since there is a small and
stable number of replicas, the size of DVV would be much smaller than
traditional VV;

– Eliminates false conflicts: clock pruning does not cause data loss, but
it does cause false conflicts, where data that could be discard, is viewed
as conflicting. Using DVV, the clock is bound to the number of replicas,
therefore pruning is not necessary, thus eliminating false conflicts;

And now the disadvantages:

– More complex write pipeline: when a non-replica node receives a PUT
request, it must forward it to a replica node. This overhead can be consid-
erable if the transferred data is big. Which is even worse if the replica is not
in the same network as the non-replica. Another thing that may affect nega-
tively the performance is the fact that clock update and synchronization has
to first be done in the coordinating replica, and then sent to the remaining
replicas, whereas in VV the object goes directly to all replicas simultane-
ously. This is made worse when in the DVV case, the resulting object of
the coordinating replica has siblings, which means that all siblings will be
transferred to the remaining replicas. With VV, only the client object is sent
to replicas.



5 Conclusions

Logical clocks in Riak are pruned when the number of entries exceeds some
threshold, and consequently does not reliably represent concurrency, thus it in-
troduces false conflicts. Having no pruning, DVV accurately tracks concurrency
while still allowing an expressive reduction of metadata size. In terms of perfor-
mance, the results showed that if we have many clients with high reads and low
writes, DVV performs much better. On the other hand, fewer clients and more
writes tend to mitigate DVV advantages, and in some cases it is worse than VV.

As future work, DVV performance should be addressed. The extra hop for
non-replica nodes could be avoid, if we use a partition-aware client library or
load balancer that knows which replica to communicate, thus reducing the re-
sponse time. Another other problem: if the resulting replica coordinator’s object
has siblings, then it has to transfer all the siblings to the others replicas. This
can be somewhat minimized if use a simple LRU cache to store keys and the
corresponding clock. Since we often do not have conflicts, the coordinator can
check first if the client object is more recent than the local one using the cache.
If it is, we can send immediately the client object to all replicas before writing
locally.

References

1. Almeida, P., Baquero, C., Fonte, V.: Version stamps-decentralized version vectors.
In: Distributed Computing Systems, 2002. Proceedings. 22nd International Con-
ference on. pp. 544 – 551 (2002)

2. Brewer, E.A.: Towards robust distributed systems (abstract). In: PODC ’00: Pro-
ceedings of the nineteenth annual ACM symposium on Principles of distributed
computing. p. 7. ACM, New York, NY, USA (2000)

3. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin,
A., Sivasubramanian, S., Vosshall, P., Vogels, W.: Dynamo: amazon’s highly avail-
able key-value store. In: SOSP ’07: Proceedings of twenty-first ACM SIGOPS sym-
posium on Operating systems principles. pp. 205–220. ACM, New York, NY, USA
(2007)

4. Fidge, C.J.: Partial orders for parallel debugging. In: Workshop on Parallel and
Distributed Debugging. pp. 183–194 (1988)

5. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system.
SIGOPS Oper. Syst. Rev. 44, 35–40 (April 2010)

6. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (July 1978)

7. Mattern, F.: Virtual time and global states of distributed systems. In: Parallel and
Distributed Algorithms. pp. 215–226. North-Holland (1989)

8. Preguiça, N.M., Baquero, C., Almeida, P.S., Fonte, V., Gonçalves, R.: Dotted ver-
sion vectors: Logical clocks for optimistic replication. CoRR abs/1011.5808 (2010)

9. Pritchett, D.: BASE: An acid alternative. ACM Queue 6(3), 48–55 (2008)
10. (TPC)., T.P.P.C.: Tpc benchmark w(web commerce) specification version 1.8

(2002)


	Improving Logical Clocks in Riak with Dotted Version Vectors: A Case Study

