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Abstract
Database clusters based on share-nothing replication techniques are cur-

rently widely accepted as a practical solution to scalability and availability of
the data tier. A key issue when planning such systems is the ability to meet
service level agreements when load spikes occur or cluster nodes fail. This
translates into the ability to provision and deploy additional nodes.

Many current research efforts focus on designing autonomic controllers
to perform such reconfiguration, tuned to quickly react to system changes
and spawn new replicas based on resource usage and performance measure-
ments. In contrast, we are concerned about the inherent impact of deploying
an additional node to an online cluster, considering both the time required to
finish such an action as well as the impact on resource usage and performance
of the cluster as a whole. If noticeable, such impact hinders the practicability
of self-management techniques, since it adds an additional dimension that
has to be accounted for.

Our approach is to systematically benchmark a number of different re-
configuration scenarios to assess the cost of bringing a new replica online.
We consider factors such as: workload characteristics, incremental and par-
allel recovery, flow control and outdatedness of the recovering replica. As a
result, we show that research should be refocused from optimizing the cap-
ture and transmition of changes to applying them, which in a realistic setting
dominates the cost of the recovery operation.



1 Introduction

Share-nothing database replication in a cluster of machines has been widely adopted
as a solution to increase system throughput and cope with failures. The system
involves a set of replicas each locally storing a physical copy of the database. Per-
formance can be increased by appropriately distributing the workload among the
replicas and fault tolerance achieved by automatically replacing any failed replica
without incurring service outages.

To meet service requirements a reconfiguration of the cluster is often required
in order to face load spikes or restore the resilience of the system. Many current re-
search efforts focus on the dynamics of the cluster designing autonomic controllers
based on a feedback loop that monitor and react in order to perform such recon-
figuration. These systems are usually tuned to quickly react to system changes
and spawn new replicas based on resource usage and performance measurements.
In contrast, in this paper we are concerned about the inherent impact of deploy-
ing an additional database replica to an online cluster. Bringing a database replica
online requires updating it to the most current database state while, at the same
time, keeping the whole system online. The efficiency of the recovering protocol
takes into account both the time required to finish the action as well as the impact
on resource usage and performance of the cluster as a whole. If noticeable, such
impact hinders the practicability of self-management techniques, since it adds an
additional dimension that has to be accounted for.

Recently, a large body of research has been dedicated to the online recovery of
replicas in database clusters [13, 2, 9, 10, 23, 16]. These works are all based on a
reliable group communication substrate and have in common the use of consistent
database replication protocols. Each of these works presents refined techniques
to improve the recovery performance aiming at reducing the system’s downtime
during recovery, the impact on the system’s throughput and the time to update a
replica and bring it online.

However, it is unfortunate that none of these works provides a detailed eval-
uation of their techniques under representative workload scenarios. In this paper,
our goal is to combine most of the proposed techniques into a streamlined recov-
ery algorithm and systematically benchmark a number of different reconfiguration
scenarios to assess the cost of bringing a replica online. This can require the trans-
ference of the whole database or just a partial update of a previously failed replica.
As a result, we are able to assess their impact in balancing the performance of
the recovery process and the overhead imposed to the clustered database service
as well as to determine fundamental limits to cluster reconfiguration, discuss the
relative merits of different approaches and point out key issues that have to be
addressed when implementing such systems.
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The paper is organized as follows: Section 2 describes the replicated database
cluster. Section 3 presents the database recovery protocol based on group commu-
nication and Section 4 its evaluation using different combinations of the protocol’s
adaptive parameters under two different workloads, TPC-C and TPC-W bench-
marks. Section 5 discusses related work and Section 6 concludes the paper.

2 Replicated Database

We consider a fully connected cluster consisting of a set of database replicas hosted
by dedicated computers. A database replica may fail by crashing and can after-
wards recover. If it recovers it does so with a consistent, possibly outdated, state.

The database replicas interact directly with the clients and coordinate with each
other through a replication protocol. The replication protocol depends heavily on
a reliable group communication service (GCS) for handling and masking faults
(management of the set of active replicas and reliable communication) as well as
totally ordering messages within the group. The GCS provides each replica a to-
tally ordered sequence of views, each view reflecting the current group of active
replicas. Changes in the composition of the group are delivered to the replication
protocol through a view change event. A new view differs in the composition of
the group in exactly one replica. We assume that GCS ensures view synchrony [5]:
two replicas installing two consecutive views deliver the same set of messages be-
tween them. Relevant for the correctness of the replication protocol used (with
impact on the figures obtained during its evaluation) is the uniformity of all the
used communication primitives: a multicast message delivered by a replica (faulty
or not) in view v is ensured to be delivered by all non faulty replicas in v.

We are interested in consistent replication protocols. These should provide
one-copy equivalence of the centralized consistency criterion at the boundaries of
transactions. For the purposes of this study the characteristics of the replication al-
gorithm are not determinant. We opted to use an algorithm with optimistic concur-
rency control, also known as a certification based algorithm [21, 11]. In contrast to
conservative algorithms [20, 1], certification based algorithms allow to extend the
centralized consistency criterion (i.e., first committer wins [3]) without strengthen-
ing it. To keep the replication protocol overhead as low as possible we consider
Generalized Snapshot Isolation [6] as the cluster consistency criterion.

We used the Database State Machine [21] protocol with a relaxed certification
procedure [6]. The protocol runs as follows. The set of database replicas form a
communication group. Each replica holds a full copy of the database and persis-
tently stores the current version of it. Any replica is capable of handling client
requests. Clients will execute transactions determined by a load generator that
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simulates the transaction traffic of a TPC-W [25] and a TPC-C [24]. Both standard
workloads represent a good point to compare between intensive memory and disk
usage, respectively. Finally, in the case of a replica failure its associated clients are
uniformly distributed among the rest of available replicas during the failure period;
however, those transactions that were already sent by clients to the failed replica
would be aborted.

Once a replica receives a transaction t it executes t without prior coordination
with the group. If the transaction successfully reaches the commit phase, then
commit is held and t is totally ordered within the group to obtain its commit turn
(read-only transactions are directly committed without any interaction with the rest
of replicas). The transaction’s write set and the database version vt on which t was
executed are multicast. Each replica, once it has processed all transactions ordered
before t, certifies t by checking its write set against all the items wrote by the
sequence of committed transactions applied over vt. If no conflicts are found t’s
updates are applied to the local database and committed, otherwise t is aborted.

Together, the agreement on the set of messages delivered to each active replica
and the total order provided by the underlying GCS along with a deterministic certi-
fication procedure ensure that the whole system acts like a replicated state machine
keeping the state of the replicas consistent at the boundaries of transactions. It is
worth noting that the updates of a transaction executed remotely are applied in the
context of a special remote transaction. To ensure the determinism of the whole
certification process, remote transactions have high priority and commit despite
conflicts with local transactions being executed [17, 18].

3 Recovery Protocol

The recovery of a replica takes place upon the delivery of a new view from the
underlying GCS containing an additional replica. The goal of the online recov-
ery protocol is to integrate the replica in the group as quickly as possible while
minimizing the impact of the recovery into the database service.

Our online recovery protocol is based on the algorithm presented in [13]. We
further enhanced it by adding two other previously proposed techniques meant to
improve performance. Namely, the ability to do parallel recovery [10] by having
more than one replica contributing with its state and the introduction of conver-
gence phases [2, 23]. Our complete algorithm still comprehends basic optimiza-
tions such as purging redundant data changes and the compression of the transmit-
ted data.

To help on the recovery of a new replica, each member of the cluster logs every
committed write set. This log has the form of 〈version,writeset〉, where the first
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element refers to the current database version and the second to the write set itself.
The log is maintained in main memory and to limit the size of the log and the
volume of the transmitted data, the log is asynchronously purged from redundant
entries (updates to the same tuples of the database). In the worst case, the log can
grow to the size of the database itself. The decision to discard part of the log below
a given database version, and the copy of the whole database if necessary, can be
defined for a given size of the log and number of outdated replicas. An important
configuration parameter of the system is the maximum size of the log up to which
the recovery protocol outperforms the full copy of a database dump [13, 2, 16].

The recovery protocol runs as follows. Upon the view change introducing a
new replica all replicas refrain from sending replication messages. The recovering
replica multicast its current version of the database asking for state donors. When
this message is delivered, a set of donors is chosen to proceed with the state transfer
of the updates missed by the recovering replica according to its announced version.
The maximum number of donors is predefined and their selection deterministic (in
our current implementation, the donors are the replicas with the lowest id in the
group). When using multiple donors the synchronization of the purging of the log
may be required. This happens when the donors split the log to transfer in terms of
size, e.g. each is responsible for donating 10MB of a 30MB subset of the log. This
allows for an even distribution of the load and was the solution we used.
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Figure 1: Phases of the recovery protocol

The data transfer is done with a unicast channel and using convergence phases.
It has been shown in [23] that recovery time can be substantially reduced if split
in convergence phases. During the whole recovery process, the recovering replica
does not handle any user requests nor it participates in the replication protocol.
On the other hand, once the new view is installed and the state transfer starts all
up-to-date replicas resume the database service.

The first convergence phase corresponds to the transference of the log at the
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time of the view change. Depending on the outdatedness of the recovering replica,
this first phase may take a considerable amount of time. Therefore, during this
phase, because the system is online the log keeps growing. The log created during
the first convergence phase is to be transfered on the second phase. As shown in
Fig. 1 this process can be generalized to n phases. This has been shown [23] to
outperform the alternative of having the recovering replica buffering the delivered
write sets until the missing log is applied. This buffer would then go through the
certification process and, when due, the updates applied.

These different convergence phases serve to coordinate the recovery and the
replication protocol. The recovery process is said to be about to end when the
write set log is below a given threshold or a maximum number of convergence
phases is reached. This establishes the synchronization point for the last phase of
the recovery process and each donor multicasts a totally ordered “end recovery”
message. Upon the reception of the first of such messages, the recovering replica
starts buffering write sets coming from the replication protocol. These write sets
are certified and, possibly, applied after the last convergence phase has been ap-
plied. From then on, switching to the replication protocol is straightforward. For
the evaluation of the recovery protocol we will therefore take into account different
values for the number of state donors and the number of convergence phases as well
as the workload during recovery as it directly impacts on the buffering required by
the recovering replica after the first convergence phase.

With regard to failures, if the joining replica fails during its recovery then the
process is aborted. If it is a donor that fails, the recovering replica restarts the
process from the latest database version it knows to be locally consistent.

4 Evaluation

4.1 Experimental Setting

Our testing configuration consisted of four computers in a switched Gigabit local
area network. This was the minimal setting allowing us to test all the relevant varia-
tions of the recovery protocol. We used machines with Intel Core 2 Duo processors
running at 2.13GHz, 1GB of RAM and a dedicated SATA hard disk. All machines
ran Linux (with kernel version 2.6.22-14-smp). This hardware configuration cor-
responds to commodity servers and was chosen to be on par with the systems used
in recent related work [17, 22, 18, 23, 16].

Each database replica ran an instance of PostgreSQL-G (PostgreSQL 8.1 com-
pliant with the GORDA replication API [4]) and a Java Virtual Machine (1.5.0)
running the Escada Replication Server [8]. The Escada Replication Server is split
in four components: the capture component that communicates with PostgreSQL-
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G, the distribution component that implements the replication protocol described in
Section 2, the recovery component that implements the recovery protocol described
in Section 3, and the apply component responsible for applying remote transaction
updates to each replica. For the group communication substrate the APPIA Group
Communication Toolkit [7] has been used.

For our evaluation of the recovery protocol we used our own implementations
of the TPC-C [24] and the TPC-W [25] benchmarks. TPC-C is the industry stan-
dard on-line transaction processing benchmark. It mimics a whole-sale supplier
with a number of geographically distributed sales districts and associated ware-
houses. The warehouses are hotspots of the system and the benchmark defines 10
client per warehouse. The traffic is a mixture of 8% read-only and 92% update
transactions and therefore is used as a write intensive benchmark. On the contrary,
TPC-W is read-intensive. It models an Internet commerce environment that re-
sembles real world, business oriented, transactional web applications. It specifies
a workload that simulates the activities of an online bookstore with three different
consumer patterns that vary the ratio of read-only transactions vs. update transac-
tions: Browsing Mix presents the 95% of read-only transaction as opposed to the
5% of update transactions; Shopping Mix specifies 80% vs. 20%; and Ordering
Mix 50% vs. 50%, respectively. TPC-W tends to be processing intensive shifting
major resource consumption from storage to CPU. For both TPC-C and TPC-W the
size of the database is a function of the desired number of clients. We have run our
experiments with a load generator that simulates the workload. As TPC-W bench-
mark defines a complete 3-tiered architecture, with clients, application server and
database servers, that is quite complex to setup and run, our TPC-W load generator
rather than mimicking the complete specification replays transaction from a previ-
ous generated database execution trace of a full TPC-W benchmark specification.
For each experiment, the TPC-W execution trace consisted of 400000 consecu-
tive transactions. Therefore, no client processing overhead is accounted for in the
measures that follow; i.e. this process is pretty similar to the one described in [22].

For all tests we chose a workload able to keep all replicas close to their nominal
capacity, that is, as busy as possible without saturation of any of resource, as shown
in Figure 2 where TPM measures system throughput in transactions per minute.
In practice, the TPC-C database has been populated with 15 warehouses which
corresponds to a maximum of 150 clients and resulted in a database of 2.2GB in
size and, for TPC-W, we chose the Shopping Mix configuration with a database
populated for 400 clients and 10000 items resulting in a database of 2.4GB. For
a higher number of clients the throughput of both benchmarks decreases as the
machine’s resources get saturated.

Throughout the experiments, no failures occurred during the recovery process
and, at anytime, at most one replica was recovering. Each result depicted in Fig-
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Figure 2: Nominal Load

ures 3 and 4 is the average of three independent samples and their standard devia-
tion is negligible.

The workflow control was done by limiting the number of clients served by
each replica. This was done in the capture component of the Escada Replication
Server that is notified of all local incoming transactions.
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4.2 Benchmark’s Clients

Clients of both load generators ran in dedicated machines of the same network and
connected using the JDBC driver. Both benchmark implementations use a simple
ad-hoc load balancer that evenly distribute clients per replica. Transactions being
handled by a replica that failed are evenly distributed among the live replicas during
the failure period but transactions that were already sent by the clients to the failed
replica are aborted.

4.3 Experiments

In our experiments we looked at three sets of results. First we wanted to measure
the impact of three configuration parameters of the recovery protocol: the num-
ber of convergence phases, the number of donor replicas and the flow control of
incoming transactions. Then we wanted to measure the overhead of the recovery
process as perceived by the users and on the amount of data being handled by the
replicas. Finally, we show the time of tasks of replicas.

Each experiment ran as follows. The system was started with all replicas run-
ning and then one of the replicas was forced to crash, i.e., by way of killing the
PostgreSQL-G and Escada Replication Server processes. The crashed replica was
kept offline until the desired outdatedness was reached. The outdatedness of a
failed replica is a function of the time the replica is offline and is also dependent
on the benchmark as each one has its specific update transactions ratio and write
set size, as depicted in Table 1. This was given by the size of the write sets of the

Table 1: Outdatedness of a failed replica (measured in Megabytes, MB) as a func-
tion of its downtime (measured in minutes, m)

Outdatedness (MB)
Downtime (m) TPC-C TPC-W

5 3 0.25
10 10 0.50
15 21 0.73
20 32 0.97
25 40 1.22
30 48 1.44
35 57 1.68
40 62 1.94
45 66 2.17
50 72 2.39
55 77 2.42
60 86 2.44
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Figure 3: Results for TPC-C (left) and TPC-W (right)

replication protocol while the replica was down. At that time, the recovery proto-
col was started. The recovery time, system throughput and log sizes at the different
replicas were measured for each of the selected configurations.

4.3.1 Recovery Time

The first set of tests relates the recovery time of a replica with its outdatedness
measured in MB.
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Varying the number of convergence phases In this set of runs we evaluate the
impact of using several convergence phases. We present the results of configuring
recovery with 1, 2 and 5 convergence phases and using a single replica as state
donor. For TPC-C, Figure 3(a) shows that with TPC-C the number of convergence
phases is not relevant except when using 1 converge phase. In this scenario, for
outdatedness larger than 50 MB, the recovery time has a high increase mainly due
to the write intensive workload that makes harder to catch up the rest of avail-
able replicas. On the contrary, Figure 3(b) shows that with TPC-W the number of
convergence phases is not relevant (notice the different scales of Figures 3(a) and
3(b)).

Varying the number of state donors The use of parallel recovery using several
replicas as state donors has been proposed in [13, 10, 2] as a way to speed up
recovery and reduce the overhead at each donor.

For these experiments we have varied the number of state donors from one to
three. The recovery protocol has been configured with two convergence phases.
The results are depicted in Figures 3(c) and 3(d). For TPC-C, I/O at the recover-
ing replica is the limiting factor. While for small values of outdatedness using a
single donor outperforms the added complexity imposed by the synchronization of
multiple state donors, for larger values the apparent advantage of multiple donors is
diluted by the I/O saturation at the recovering replica. It is worth noting that when
recovering, similarly to the replication protocol in use, the application of updates
to the replicas is done sequentially. This means that the recovery protocol would
not take full advantage of the parallel reception of updates because the bottleneck
in the state transference is at the recovering replica.

With TPC-W the differences are again negligible as the amount of updates does
not impose any major overhead on the donors at the second convergence phase and,
for the three configurations, it is the I/O bandwidth of the recovering replica that
dictates the recovery time.

Flow control of incoming transactions Recovery time may depend heavily on
the processing flow during the recovery process. Ultimately, such a throughput
could be so large that no replica could ever catch up. In practice however, with full
and consistent replication, throughput is determined by the slowest live replica.
As such, as long as replicas do not differ enormously in their processing and I/O
capacities, ensuring the timely recovery of a replica is perfectly reasonable. With
the next experiment we intended to see what was the impact of controlling the
systems throughput during recovery on the recovery time of a replica.

We configured the recovery protocol with 2 phases and 3 state donors. Then
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Figure 4: Throughput of user transactions before and during the recovery process

we imposed a control of 5, 10, 20 and 50% to the flow of incoming transactions
with the TPC-C workload to see the impact in the recovery time. We considered
also the limit cases: no flow control (as in all previous tests) and an offline system.
Figure 3(e) shows the results obtained. It can be seen that reducing, at least, up to
50% of the workload the differences are minimal and mostly due to variance.

With TPC-W, Figure 3(f), the impact is also negligible and again diluted by
variance.

4.3.2 Impact of Recovery on the System’s Throughput

We now show the impact of the recovery of a replica on the system’s throughput.
We analyze the system throughput (measured in Transactions Per Minute, TPM)
under all the previous recovery scenarios with a downtime of 60 minutes. Fig-
ures 4(a) and 4(b) depict the results for TPC-C and TPC-W, respectively. For each
configuration (1d-2p-0%fc stands for a configuration with 1 state donor, 2 conver-
gence phases and no flow control) we present the system’s throughput before and
during the recovery process.

In general, we conclude that throughput is reduced by approximately 15% for
the TPC-C workload during the recovery process, and approximately 10% for the
TPC-W workload. This impact on system’s throughput is not only related to the
overhead of the recovery process imposed to donors but also to the cost of GCS
view change. It is also interesting that despite the large differences seen so far
when comparing the different recovery scenarios, the impact of recovery on the
system’s throughput is comparable for the two workloads.
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Figure 5: Data Log size for TPC-C and TPC-W

4.3.3 Evolution of Log Sizes During Recovery

In this section we analyze the amount of data being handled by the replication and
the recovery protocols. The results are depicted in Figure 5 for both TPC-C and
TPC-W. The database log size was sampled every second during the period of the
experiment. We measured the log size in different replicas: in an active replica
before recovery started (Before); in a state donor after the start of the recovery
(After); and, in the recovering replica (Recovering). Additionally, we measure the
size of transferred data from a state donor to the recovering replica (Transferred);
in the case of multiple donors, one of them was chosen to show these values since
they are almost identical and the graphics overlap.

The interesting information conveyed by these figures is the fast transfer be-
tween the donor(s) and the recovering replica regarding the log existing before the
recovery starts and then the much slower convergence for the the set of pending
transactions, i.e. those transactions that need to be certified and applied (catch-up
process).

It is also clear that processing of user transactions continues independently of
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the recovery process; nevertheless, it can be seen that the performance is affected
by the increasing slope of the log size during the recovery process.

4.3.4 Discussion

Taken as a whole, our results show that there is no clear impact of the different
optimizations that have been the focus of recent research efforts. The reason for
this is that the time for the state donor to read the log and send updates to the
network is a mere 15% of the time that the recovering replica needs to read the
updates from the network and apply them. In detail, for TPC-C with a downtime of
60 minutes, 2 convergence phases, and 1 state donor, the donor needs 168 seconds
to complete its task while the recovering replica needs 1145 seconds. From these,
more than 93% (1073 seconds) correspond to the apply process.

Since the major bottleneck is in applying updates, the recovery time is mainly
dictated by the I/O bandwidth of the recovering replica. Therefore, most research
has been targeted at optimizing the operations that aren’t, by a large margin, limit-
ing factors in overall performance.

5 Related Work

Most of the replication protocols proposed in the literature overlook and do not
discuss at all the recovery of failed sites or the addition of new ones (e.g. [6, 12,
14, 17]). On the other hand, those that do cover it either do so by simply presenting
the algorithms and informally describing them [2, 9, 10, 13] or are evaluated with
ad-hoc workloads [16, 23].

In this section, we compare our work with the recovery solutions proposed
in [2, 9, 10, 13, 16, 23]

Like ours, these proposals depart from the work in [13] where several recovery
techniques are proposed. The main adopted technique is the lazy data transfer
where missed updates are transferred in several phases. Implicitly, it considers
these features: first of all, the existence of a threshold that determines whether it
is better to perform the full database transfer or only the missed write sets; and,
transferring only the latest data item version instead of transferring several times
the same data item. These are the ideas that we have included in the implementation
of the current recovery protocol and is basically a compilation of what has been
described in [10, 2, 9].

An interesting non-blocking recovery protocol is presented in [10] where trans-
action patterns are known in advance (e.g. stored procedures) and define conflict
classes. The recovery process is done per conflict class and, hence, an unaltered
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partition remains unaffected. The end of the recovery process is performed in two
phases. Our recovery protocol does not follow this conflict class philosophy be-
cause it is highly application dependent and force transactions to use a pattern that
restricts the kind of statements to be executed. On the other hand, our protocol
allows transactions to continue their execution even while recovery takes place and
permits more degrees of freedom over the number of donors or phases. To the best
of our knowledge, the performance of the recovery protocol proposed in [10] has
never been evaluated.

The recovery techniques presented in [9] are based on exploiting the ideas
of [13] to 1-copy-serializable replicated database systems based on total-order mul-
ticast while [2] ports [13] to replicated databases with snapshot isolation replicas.
The protocol presented in [2] has been implemented and evaluated in [16, 23].
In [23] a cluster of 4 replicas where only one replica may fail was considered
and the evaluation carried out using an ad-hoc benchmark that uses a single table
database schema with several combinations of outdatedness and workload. In [16],
the same algorithm has been evaluated using 2 replicas that execute the browsing
mix (80% of read-only transactions) of the OSDL-DBT-1 benchmark [19]. In this
work we have used two well-known and widely used standard benchmarks (TPC-C
and TPC-W) to evaluate the performance of the recovery protocol with 4 replicas.

6 Conclusions

With this work we aimed at assessing the impact on performance of bringing a
database up-to-date when adding a new replica to a strongly consistent replicated
database. Preparing a new replica and bringing it online without stopping the repli-
cated database is not a straightforward task. The joining node needs to become part
of the coordinated computation, to be updated to the most current state of the sys-
tem and start to handle user requests with minimal impact on the performance of
the system.

As part of our database replication framework [8] we implemented a database
recovery protocol that combines several techniques proposed in the literature [13,
2, 9, 10] aimed at speeding up the process. These techniques had not been evalu-
ated in a practical setting under representative workloads and it was our intention
to discover to what extend their use would allow a system administrator to find
the desired balance between the shortest recovery period and the impact on the
system’s performance.

We used a cluster of commodity servers reflecting a common balance between
processor, memory, storage and network resources as the typical target system for
small to medium size clustered databases. Much to our surprise, the results of all

15



of our tests did not reveal any relevant effect of the techniques incorporated by our
protocol in the recovery time of the replicas or impact on the overall cluster perfor-
mance. The reason for this was that, in our setting, the capacity of the recovering
replica to apply the received state turns out to be the salient limiting factor. Since
most of the recovery protocol enhancements under evaluation aim at quickly feed
the recovering replica (while minimizing the impact of the overall system response)
its inability to timely process the updates defeats their purpose.

To streamline the whole recovery process and quickly bring a new replica on-
line the strong optimization of the apply process is essential. This cannot be simply
regarded as a matter of increasing storage bandwidth through the use of striping
techniques or the addition of faster hard disks. While such an improvement could
definitively help mitigating the problem in our testbed it would not keep up with a
compatible investment on processing capabilities. A major improvement could be
achieved by keeping a binary log for recovery that could be efficiently injected into
the recovery replica without going through all the transaction processing pipeline.
However, the direct cost of such an approach would be the need to work inside the
database engine and to compromise the heterogeneity of the system. It seems clear
to us that the key solution for the problem in hand is two-fold: the parallelization
of the apply process inside the replication protocol and the use of on-demand state
transfer [15].
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[20] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso. MIDDLE-
R: Consistent database replication at the middleware level. ACM Trans. Com-
put. Syst., 23(4):375–423, 2005.

[21] F. Pedone. The database state machine and group communication issues
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