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Abstract

Recently, third party solutions for database replication have been
enjoying an increasing popularity. Such proposals address a diversity
of user requirements, namely preventing conflicting updates without
the overhead of synchronous replication; clustering for scalability and
availability; and heterogeneous replicas for specialized queries. Unfor-
tunately, the lack of native support from database vendors for third
party replication forces implementors to either modify the database
server, restricting portability, or to develop a middleware wrapper,
which causes a performance overhead. This paper addresses this prob-
lem with a novel architecture and programming interface for replica-
tion, such that different strategies can be efficiently implemented on

∗Parts of this extended report were published in the Proceedings of the 6th IEEE
Internacional Symposium on Network Computing and Applications (NCA ’07), Boston,
MA, USA. 2007.
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any compliant database management system in a cost-effective man-
ner. The contribution is two-fold. First we propose a reflective model
of transaction processing and explain how it can be used to achieve
replication. Then we implement the proposed architecture in Apache
Derby, PostgreSQL, and Sequoia and evaluate the PostgreSQL imple-
mentation with the TPC-W industry standard benchmark.

1 Introduction

Database replication has been a common feature in database management
systems (DBMS) for a long time. In particular, asynchronous or lazy prop-
agation of updates provides a simple yet efficient way of increasing perfor-
mance and data availability [6] and is widely available accross the DBMS
product spectrum. High end systems additionally offer sophisticated conflict
resolution and data propagation options as well as, synchronous replication
based on distributed locking and two-phase commit protocols.

There has however been a growing interest in third party replication so-
lutions. Namely, recent research in database replication based on group
communication has proposed novel algorithms that achieve strong replica
consistence without the overhead of traditional synchronous replication [8,
14, 10, 22]. The large demand for 3-tier systems and Web applications,
with read-intensive database workloads, have increased the interest on clus-
tering middleware such as Sequoia (formerly ObjectWeb C-JDBC) [4] for
cost-effective scalability and higher availability. Finally, replication has also
been proposed as the means to seamlessly combine special purpose query
processing abilities from multiple DBMS [15].

The lack of native support from database vendors for third party replica-
tion forces proponents of those solutions to either modify the database server
or to develop, in middleware, a server wrapper that intercepts client requests.
Unfortunately, the modification of the database server is hard to maintain
and port, and, in many cases, simply impossible due to unavailability of
source code. On the other hand, a middleware wrapper, which implements
replication and redirects requests to the actual underlying DBMS, represents
a large development effort and introduces an additional communication step
and thus some performance overhead.

We address this problem with the GORDA1 architecture and program-

1The work reported here is being developed in the context of an EU funded research
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ming interface (GAPI), that enables different replication strategies to be
implemented once and deployed in multiple database management systems.
This is achieved by proposing a reflective interface to transaction processing
instead of relying on client interfaces or ad-hoc interface extensions. The
proposed approach is thus cost-effective, in enabling reuse of replication pro-
tocols or components in multiple DBMSs, as well as potentially efficient, as
it allows close coupling with DBMS internals.

The contribution of the paper is therefore as follows. First we propose a
reflective model of transaction processing and illustrate how it can be used
to implement several representative replication strategies. Then we imple-
ment and evaluate the proposed architecture in three representative DBMS
architectures, namely, Apache Derby 10.2 [1], PostgreSQL8.1 [17], and Se-
quoia 2.9 [4]. These implementations illustrate a spectrum of different ways
to implement the proposed interface. Finally we experimentally evaluate the
performance of the proposed approach.

The rest of this paper is structured as follows. Section 2 discusses im-
plementation strategies and reflection facilities in database management sys-
tems. Section 3 introduces the GORDA architecture and programming in-
terface (GAPI). The application to several replication protocols is presented
in Section 4. Section 5 discusses implementation strategies and trafeoffs.
Section 6 evaluates the resulting performance and Section 7 concludes the
paper.

2 Background

In this section, we survey different architectures to implement replication
in concrete systems as well as existing reflection facilities that have been
proposed for database management systems.

project, GORDA (Open Replication of DAtabases, http://gorda.di.uminho.pt), that
intends to foster database replication as a means to address the challenges of trust, in-
tegration, performance, and cost in current database systems underlying the information
society. The GORDA project has a mix of academic and industrial partners, including U.
do Minho, U. della Svizzera Italiana, U. de Lisboa, INRIA Rhône-Alpes, Continuent Oy,
and MySQL AB.

3



2.1 Implementation of Replication

Multiple architectures have been used to interface replication protocols with
DBMS. In the following, we discuss their main categories.

Replication implemented as a normal client. In this approach, both
the application and the replication protocol interact with the DBMS inde-
pendently and exclusively through client interfaces, e.g. JDBC. This makes
the replication protocol portable and can be very efficient, specially when
the code resides within the server using a server side client interface. This
strategy is however very limited as the replication protocol is confined to
propagate the updates performed by the application initiated transactions
without any control over their execution. As a consequence, the inability
to suspend a third party initiated transaction and synchronously update the
database replicas only allows to perform asynchronous replication. An exam-
ple of this approach is Slony-I [18], which provides asynchronous replication
of PostgreSQL. Typically, these solutions resort to installing triggers in the
underlying DBMS in order to update meta-information and gather updates.

Replication implemented as a server wrapper. These implemen-
tations rely on a wrapper to the database server that intercepts all client
requests by sitting between clients and the server. An example of an appli-
cation of this approach is Sequoia [4]. The middleware layer presents itself
to clients as a virtual database. Compared to the previous approach, imple-
mented as regular DBMS client, this solution offers improved functionality,
as it is able to intercept, parse, delay, modify, and finally route statements
to target database servers. Nonetheless, it imposes additional overhead, as
it duplicates some of the work of the database server. The development of
such infrastructure represents also a large undertaking, and prevents clients
to connect directly to database servers using native privileged interfaces. It
also has to rely on triggers, installed in the underlying DBMS to capture
relevant control information such as updates.

Replication implemented as a server patch. This solution requires
changes to the underlying database server. This approach has been used to
implement certification-based replication protocols such as the Postgres-R
prototypes [8, 22]. Given that it is implemented in the DBMS kernel, the
replication protocol has an easy access to control information such as read
and written tuple sets, transaction lifecycle events, etc. It has however the
disadvantage of requiring access to the database server source code. It also
imposes a significant obstacle to portability, not only to the multiple database
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servers but also as the implementation evolves.
Replication using custom interfaces. Database servers that natively

support asynchronous replication usually do so using a well defined and pub-
lished, although proprietary, interface. This allows some customization and
integration with third party products when asynchronous propagation is de-
sired but of little use otherwise. An example of the approach is the Oracle
Streams interface [2] which is based on existing standards and confined to
asynchronous propagation of updates.

2.2 Reflection and Database Management Systems

Reflective systems allow a computation to be inspected or altered by interact-
ing with a representation of itself, i.e. its own reflection [9]. For instance, in
an object oriented system, invocations of methods on objects can be reflected
as objects in order to be inspected and manipulated. To be distinguished
from ordinary or base objects, reflected objects are usually called meta-objects.
It has been shown that reflection is key to extensible systems that can evolve.

Reflective capabilities have been offered by database management systems
for a long time, in which computation on the relational model is reflected back
to relation entities. The most prevalent are triggers, which allow update
operations to be intercepted by user defined procedures, and log mining,
which expose commited transactions as read-only relational tables. Both
have been used to collect updates for the purpose of replication. The usage
of such reflective features for self-tuning has been proposed in [12].

Custom interfaces to extract write-sets for different replication strategies
can also be regarded as reflective interfaces [21]. These are however tightly
coupled to the semantics of specific replication protocols, i.e., on how buffer-
ing is performed and how they are synchronized with transaction commit
events, or to specific implementation strategies, i.e. assuming server wrap-
per. Their usage as a base for portable replication implementations is thus
limited.

Extensive research has also been done on aspect oriented databases, which
builds on reflection [19]. This effort is however not useful to replication as if
focus on reflecting static aspects such as integrity constraints, and not dy-
namic aspects such as requests and transactions. It is used, for instance, to
allow the database schema to evolve while maintaining backwards compati-
bility with existing applications.

5



3 Reflective Architecture and Interfaces

In this section we outline the GORDA architecture and programming inter-
face, as well as the underlying rationale. Implementation issues are discussed
in Section 5.

Target Reflection Domain Existing reflective facilities in database man-
agement systems are targetted at application programmers using a relational
model. Its domain is therefore the relational model itself. With it, one can
intercept operations that modify relations by inserting, updating, or deleting
tuples, observe the tuples being changed and then enforce referential integrity
by vetoing the operation (all at the meta-level) or by issuing additional re-
lational operations (base-level).

In contrast, a replication protocol is concerned with details that are not
visible in the relational model, such as modifying query text to remove non-
deterministim or the precise scheduling of updates to achieve a given isolation
level. For instance, one may be interested in intercepting a statement as it is
submitted, whose text can be inspected, modified (meta-level) and then re-
executed, locally or remotely, within some transactional context (base-level).

Therefore, a more expressive target domain is required. We select an
object-oriented concurrent programming environment. Specifically, we use
the Java platform, but any similar language would do. The fact that a series
of activities (e.g. parsing) is taking place on behalf of a transaction is reflected
as a transaction object, which can be used to inspect the transaction (e.g.
wait for it to commit) or to act on it (e.g. force a rollback).

Meta-level code can register to be notified when specific events occur.
For instance, when a transaction commits a notification is issued, containing
a reference to the corresponding transaction object (meta-level). Actually,
handling notifications is the way that meta-level code dynamically aquires
references to meta-objects describing the on-going computation.

Processing Stages The usefulness of the meta-level interface depends on
what is exposed as meta-objects. If a very fine granularity is chosen, the
interface cannot be easily mapped to different DBMSs and the resulting
performance overhead is likely to be high. On the other hand, if a very large
granularity is chosen, the interface may expose too little to be useful.

Therefore, we abstract transaction processing as a pipeline as it is com-
monly accepted [5] (Fig. 1). In detail, the Parsing stage parses raw state-
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Figure 1: Major meta-level interfaces: processing stages and contexts.

ments received thus producing a parse tree. The parse tree is transformed by
the Optimization stage according to various optimization criteria, heuristics
and statistics to an execution plan. The Execution stage executes the plan
and produces object-sets. The Logical Storage stage deals with mapping from
logical objects to physical storage. Finally, the Physical Storage stage deals
with block input/output and synchronization.

In general, one wants to issue notifications at the meta-level whenever
computation proceeds from one stage to the next. For instance, when write-
sets are issued at the execution stage, a notification is issued such that they
can be observed. The interface thus exposes meta-objects for each stage and
for data that moves between them.

In contrast, previous approaches assume that reflection is achieved by
wrapping the server and intercepting requests as they are issued by clients [21].
By choosing beforehand such implementation approach, one can only reflect
computation at the first stage, i.e. with a very large granularity. Exposing
further details requires rewriting large portions of DBMS functionality at
the wrapper level. As an example, Sequoia [4] does additional parsing and
scheduling stages at the middleware level.

Processing Contexts The meta-interface exposed by the processing pipeline
is complemented by nested context meta-objects, also shown in Fig. 1. These
show on behalf of whom some operation is being performed. In detail, the
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DBMS and Database context interfaces expose metadata and allow notifica-
tion of lifecycle events. Connection contexts reflect existing client connec-
tions to databases. They can be used to retrieve connection specific infor-
mation, such as user authentication or the character set encoding used. The
Transaction context is used to notify events related to a transaction such as
its startup, commit or rollback. Synchronous event handlers available here
are the key to the synchronous replication protocols presented in this docu-
ment. Finally, to ease the manipulation of the requests within a connection
to a database and the corresponding transactions one may use the Request
context interface.

Events fired by processing stages refer to the directly enclosing context.
Each context has then a reference to the next enclosing context and can
enumerate all enclosed contexts. This allows, for instance, to determine all
connections to a database or which is the current active transaction in a
specific connection. Notice that some contexts are not valid at the lowest
abstraction levels. Namely, it is not possible to determine on behalf of which
transaction a specific disk block is being flushed by the physical stage.

Furthermore, replication protocols can attach an arbitrary object to each
context. This allows context information to be extended as required by each
replication protocol. As an example, when handling an event fired by the
first stage of the pipeline, signaling the arrival of a statement in textual
format, the replication protocol gets a reference to the enclosing transaction
context. It can then attach additional information to that context. Later,
when handling an event signaling the readiness of parts of the write-set, the
replication protocol follows the reference to the same transaction context to
retrieve the information previously placed there.

Base-level and Meta-level Calls An advantage of reflection is that base-
and meta-level code can be freely mixed, as there is no inherent difference
between base- and meta-objects. This happens also in the proposed interface,
albeit with some limitations.

In detail, a direct call to meta-level code can be forced by the application
programmer by registering it as a native procedure and then using the CALL
SQL statement. This causes a call to the meta-level code to be issued from
the base-level code within the Execute stage. The target procedure can then
retrieve a pointer to the enclosing Request context and thus to all relevant
meta-interfaces. The reason for allowing this only from the Execute stage
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is simplicity, as this is inherently supported by any DBMS, and does not
seem to impact generality. A second reason is that this is where the pipeline
can be reentered, should the meta-level procedure need to callback into the
base-level.

Meta-level code can callback into base level in two different situations.
The first is within a direct call from base-level to issue statements in an ex-
isting enclosing request context. This can be achieved using the JDBC client
interface by looking up the “jdbc:default:connection” driver, as is usually
done in Java procedures. The second option is to use the enclosing Database
context to open a new base-level connection to the database. The reason
for allowing base-level to use the JDBC interface is again simplicity, as this
avoids the need to have interfaces that build contexts and inject external data
into internal structures. This may however have an impact on performance,
and is thus the subject of future work as discussed in Section 7.

A second issue when considering base-level calls is whether these also
get reflected. The proposed option is to disable reflection on a case-by-
case basis by invoking an operation on context meta-objects. Therefore,
meta-level code can disable reflection for a given request, a transaction, a
specific connection or even an entire database. Actually this can be used
on any context meta-object and thus for perfomance optimization. For one,
consider a replication protocol, that is notified that a connection will only
issue read-only operations, and thus ceases monitoring them.

A third issue is how base-level calls issued by meta-level code interact
with regular transaction processing regarding concurrency control. Namely,
how are conflitcs that require rollback resolved, namely, in multi-version con-
currency control where the first commiter wins or, more generally, when re-
solving deadlocks. The proposed interface solves this by ensuring that trans-
actions issued by the meta-level do not abort in face of conflicts with regular
base-level transactions. Given that replication code running at the meta-level
has a precise control on which base-level transactions are scheduled, and thus
can prevent conflicts among those, has been sufficient to solve all considered
use cases. The simplicity of the solution means that implementation within
the DBMS resulted in a small set of localized changes.

Design Patterns The design of meta-level interfaces leverages patterns
that have proven useful in object oriented middleware. The first is the faade,
which allows inspection of diverse data structures through a common inter-
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face. A very well known example is the ResultSet, which allows results to be
stored in a DBMS native format. The alternative is the potentially expen-
sive conversion to a common format such as XML. The proposed architecture
suggests using this for most of the data that is conveyed between processing
stages (e.g. object sets).

The second is the inversion-of-control pattern, which eases deployment
of software components. In detail, meta-objects such as transactions are
exposed to an object container, which is configured with replication com-
ponents. The container is then responsible for injecting the required meta-
objects into each replication component during initialization.

The third pattern is the container managed concurrency. The container
implementation schedules event notifications according to performance and
correctness criteria. For instance, by ensuring that no two transactions com-
mit notifications are issued concurrently, implicitly exposes a commit order.
Notification of available write-sets of two different transactions can be issued
concurrently.

4 Case Studies

This section describes how the reflector interface is used to implement state-
machine, primary-backup and certification-based replication protocols and
also how it might be used to delevop plugins such as tracers and debuggers.

4.1 Primary-Backup

Overview In the primary-backup approach to replication, also called pas-
sive replication [13], update transactions are executed at a single master site
under the control of local concurrency control mechanisms. Updates are then
captured and propagated to other sites. Asynchronous primary-backup is the
standard replication in most DBMSs and third-party offers. An example is
the Slony-I package for PostgreSQL [18]. Implementations of the primary-
backup approach differ whether propagation occurs synchronously within
the boundaries of the transaction or, most likely, is deferred and done asyn-
chronously. The latter provides optimum performance when synchronous
update is not required, as multiple updates can be batched and sent in the
background. It also tolerates extended periods of disconnected operation.
The main advantage of this approach is that it can easily cope with non-
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Figure 2: Primary-backup replication.

deterministic servers. A major drawback is that all updates are centralized
at the primary and little scalability is gained, even if read-only transactions
may execute at the backups. It can only be extended to multi-master by
partitioning data or defining reconciliation rules for conflicting updates. The
Primary-Backup protocol has a primary replica where all transactions that
update the database are executed. Updates are either disseminated in trans-
action’s boundaries (i.e., synchronous replication) or periodically propagated
to other replicas in background (i.e., asynchronous replication).

Reflector Components Used Synchronous primary-backup replication
requires the component that reflects the Transaction context to capture the
moment where the transaction starts executing, commits, or rollbacks at the
primary. It will also need the object set provided by the Execution stage to
extract the write set of a transaction from the primary and insert it at the
backup replicas.

Replicator Execution The execution of a primary-backup replicator is
depicted in Figure 2. We start by describing the synchronous variant. It
consists of the following steps. Step 1: Clients send their requests to the
primary replica; Step 2: When a transaction begins, the replicator at the
primary is notified, registers information about this event, and allows the
primary replica to proceed; Step 3: Right after processing a SQL command
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the database notifies the replicator through the Execution stage component
sending an ObjectSet. Roughly, the ObjectSet provides an interface to iterate
on a statement’s result set (e.g.,write set). Specifically, in this case, it is
used to retrieve statement’s updates which are immediately stored in a in-
memory structure with all other updates from the same transaction context;
Step 4: When a transaction is ready to commit, the transaction context
component notifies the replicator of the primary. The replicator atomically
broadcasts the gathered updates to all backup replicas (this broadcast should
be uniform [3]); Step 5: The write set is received at all replicas. On the
primary, the replicator allows the transaction to commit. On the backups, the
replicator injects the changes in the DBMS; Final Step: After the transaction
execution, the primary replica replies to the client. An asynchronous variant
of the algorithm can be achieved by postponing Step 4 (and, consequently,
Step 5) for a tunable amount of time.

4.2 State-machine

Overview The state-machine approach, also called active replication [13],
is a decentralized replication technique. Consistency is achieved by starting
all replicas with the same initial state and, subsequently, receiving and pro-
cessing the same exact sequence of client requests. Examples of this approach
are provided by the Sequoia [4] and PGCluster [16] middleware packages. The
main advantage of this approach is its simplicity and failure transparency,
since if a replica fails the requests are still processed by the others. It also
trivially handles Data Definition Language (DDL) statements without any
special requirements. On the other hand, the state machine operates cor-
rectly only under the assumption that requests are processed in a determin-
istic way, i.e., when provided with the same sequence of requests, replicas
produce the same sequence of output and have the same final state. To start
with, this requires that the original SQL command is rewritten to remove
non-deterministic expressions and functions such as now(). A second source
of non-determinism is scheduling of concurrently executing conflicting trans-
actions, namely, the order by which locks are acquired is hard to predict. To
overcome this problem, it is common to have an external global scheduler
that manages which SQL commands can be concurrently processed without
undermining the determinism requirement. This introduces additional com-
plexity and may overly restrict concurrency in update-intensive workloads.
The state-machine protocol requires that all replicas receive and process the
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Figure 3: State-machine replication using.

same sequence of client requests producing a deterministic outcome. To
accomplish this, we need to intercept client requests before it is processed
enforcing deterministic executions. Specifically, begin, commit and rollback
commands, implicitly or explicitly sent, and every SQL command should be
intercepted. One possible solution is depicted in Figure 3.

Reflector Components Used State-machine replication requires the use
of the Transaction context component and Parsing Stage component. On
one hand, the transaction component is used to capture the moment where
the transaction starts to execute, commits, or rollbacks at one replica. On
the other hand, the Parsing Stage component is used to capture and start
the execution of transaction statements.

Replicator Execution The execution of a state-machine replicator is de-
picted in Figure 3. It consists of the following steps. Step 1: Clients send their
requests to one of the replicas. This replica is called the delegate replica; Step
2: Using the Transaction component the replicator at the delegate replica
is notified of the beginning of the transaction. The replicator uses a to-
tally ordered atomic broadcast to propagate this notification to all other
replicas; Step 3: All replicators receive the notification in the same order.
The transaction is started in remote replicas and resumed in the delegate
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replica; Step 4: The transaction is executed at the delegate replica; Every
time a new command starts the replicator is notified through the Parsing
Stage component of the reflector interface. Then the replicator verifies if
its parsed statement does not have any expression or function (e.g., now())
that might lead to non-deterministic executions. If so, it changes the parsed
statement in order to remove the non-determinism. The resulting (poten-
tially altered) parsed statement is broadcast to all replicators; Step 5: The
parsed statement is received at all replicators. Replicators must implement a
deterministic scheduler: each replicator must ensure that no two concurrent
conflicting parsed statements are handled to the underlying DBMS. If such
conflict exists, the parsed-statement is kept on hold. Otherwise it is han-
dled to the DBMS at all replicas through the parsing stage component. It
is worth noting two points related to this strategy. First, with this approach
deadlocks may happen and the replicator should resolve them. Second, if a
statement would be used, as it provides access to a command as a string, the
replicator would also need to parse it to extract information on tables. Fur-
ther steps: Steps 4 and 5 above are repeated; Step 6: Using the Transaction
context component the replicator at the delegate replica is notified when the
transaction is about to commit or rollback. This notification is atomically
broadcast to all replicators; Step 7: Upon receiving a commit or rollback
notification, remote replicas execute the proper command and the delegate
replica allows it to proceed; Final step: Once the processing is completed,
the delegate replica replies to the client.

4.3 Certification Based

Overview Certification based approaches operate by letting transactions
execute optimistically in a single replica and, at commit time, run a coordi-
nated certification procedure to enforce global consistency. Typically, global
coordination is achieved with the help of an atomic broadcast service, that
establishes a global total order among concurrent transactions [8, 14, 10, 22].
Multiple variants of the certification based approach have been proposed.
Here we briefly describe an approach providing snapshot-isolation [10, 22].
At the time a transaction is initiated, a replica is chosen to execute the trans-
action (usually, the closest replica to the client which is called the delegate
replica). When a transaction intends to commit, its identification, database
version read, and the write set are broadcast to all replicas in total order.
Right after being delivered by the atomic broadcast protocol, all replicas
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verify if the received transaction has the same version as the database. If
so, it should commit. Otherwise, one needs to check if previously commit-
ted transactions do not conflict with it. There is no conflict if previously
committed transactions have not updated the same items. If a conflict is
detected, the transaction is aborted. Otherwise, it is committed. Since this
procedure is deterministic and all replicas, including the delegate replica,
receive transactions by the same order, all replicas reach the same decision
about the outcome of the transaction. The delegate replica can now inform
the client application about the final outcome of the transaction.

This can be extended to serializability by considering also the read-set
and then detecting read-write conflicts during certification [8, 14]. Although
this might have some impact in performance [7], it is desirable for DBMS in
which the consistency criterion is similar. Note also that certification based
approaches do not require the entire database operation to be deterministic:
Only the certification phase has to be processed in a deterministic manner.
Furthermore, they allow different update transactions to be executed con-
currently in different replicas. If the number of conflicts is relatively small,
certification based approaches can provide both fault-tolerance and scalabil-
ity. Certification based approaches operate by letting a transaction to execute
optimistically in a single replica and, at commit time, execute a coordinated
certification procedure to enforce global consistency.

Reflector Components Used Given its similarity to the Primary-Backup
approach, the Certification based replication requires the use of the same
components, explicitly the Transaction context and Parsing Stage compo-
nents.

Replicator Execution The execution of a certification-based replicator
is depicted in Figure 4. It consists of the following steps. Step 1-4: Same
as in the Primary-Backup solution presented before; Step 5: Upon receiving
the write-set, each replica certifies the transaction and decides its outcome:
commit or abort. If it is an abort, the delegate replica through the transaction
context component cancels the commit and remote replicas discard it. If it
is a commit, the delegate replica allows it to continue and remote replicas
inject updates in the DBMS; Final Step: The delegate replica returns the
response to the client.
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Figure 4: Certification-based replication.

5 Implementation

In this section we discuss how the proposed architecture and interface is
implemented in three different systems, namely, Apache Derby, PostgreSQL,
and Sequoia. These systems represent different tradeoffs and implementation
decisions and are thus representative of what one should expect when imple-
menting the GORDA architecture and programming interfaces, namely, in
terms of lines of code required.

Apache Derby 10.2 Apache Derby 10.2 [1] is a fully featured database
management system with a small footprint developed by the Apache Foun-
dation and distributed under an open source license. It is also distributed as
IBM Cloudscape and in the upcoming Sun JDK 1.6 as JavaDB. It can either
be embedded in applications or run as a standalone server. It uses locking
to provide serializability. The prototype implementation of the GORDA in-
terface takes advantage of Derby being natively implemented in Java to load
meta-level components within the same JVM and thus closely coupled with
the base-level components. Furthermore, Derby uses a different thread to
service each client connection, thus making it possible that notifications to
the meta-level are done by the same thread and thus reduce to a method
invocation, which has negligible overhead. This is therefore the preferred
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implementation scenario. The current prototype exposes all contex objects
and the parsing and execution objects, as well as calling between base-level
and meta-level as described in Section 3. Therefore, it supports all use cases
described in Section 4. The effort required to implement such subset of the
interface can roughly be estimated by the amount of lines changed in the
original source tree as well as the amount of new code added: the size of
Apache Derby is 514941 lines, where 29 files were changed by inserting 1250
lines and deleting 25 lines; 9464 lines of code were added in new files.

PostgreSQL 8.1 PostgreSQL 8.1 [17] is a fully featured database manage-
ment system distributed under an open source license. Although written in
C, it has been ported to multiple operating systems, and is included in most
Linux distributions as well as in recent versions of Solaris. Commercial sup-
port and numerous third party add-ons are available from multiple vendors.
Since version 7.0, it provides a multi-version concurrency control mechanism
supporting snapshot isolation. The major issue in implementing proposed
architecture is the mismatch between its concurrency model and the multi-
threaded meta-level runtime. PostgreSQL 8.1, as all previous versions, uses
multiple single-threaded operating system processes for concurrency. This
is masked by using the existing PL/J binding to Java, which uses a single
standalone Java virtual machine and inter-process communication. This im-
poses an inter-process remote procedure call overhead on all communication
between base and meta-level. Furthermore, the prototype implementation
of the GORDA interface in PostgreSQL 8.1 uses a hybrid approach. Instead
of directly patching the reflector interface on the server, key functionality is
added to existing client interfaces and as loadable modules. The proposed
meta-level interface is then built on these. The two layer approach avoids
introducing a large number of additional dependencies in the PostgreSQL
code, most notably on the Java virtual machine. As an example, transaction
events are obtained by implementing triggers on transaction begin and end.
A loadable module is then provided to route such events to meta-objects in
the external PL/J server. The current prototype exposes all contex objects
and the parsing and execution objects, as well as calling between base-level
and meta-level as described in Section 3. It avoids that meta-level operations
are blocked by base-level operations simply by modifying the choice of the
transactions to be terminated upon deadlock detection and write conflicts.
Therefore, it supports all use cases described in Section 4. The effort required
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to implement was as follows. The size of PostgreSQL is 667586 lines and the
PL/J package adds 7574 lines of C code and 16331 of Java code, where 21
files were changed by inserting 569 lines and deleting 152 lines. Additionally,
1346 lines of C code and 11512 lines of Java code were added in new files.

Sequoia 2.9 Sequoia [4] is a middleware package for database clustering
built as a server wrapper. It is primarily targetted at obtaining replica-
tion or partitioning by configuring the controller with multiple backends,
as well as improving availability by using several interconnected controllers.
Nevertheless, when configured with a single controller and a single backend,
Sequoia provides a state-of-the-art JDBC interceptor. It works by creating a
virtual database at the middleware level, which reimplements part of the ab-
stract transaction processing pipeline and delegates the rest to the backend
database. The current prototype exposes all context objects and the parsing
and execution objects, as well as calling from meta-level to base-level with a
separate connection. It does not allow calling from base-level to meta-level,
as execution runs in a separate process. It can however be implemented by
directly intercepting such statements at the parsing stage. It does also not
avoid that base-level operations interfere with meta-level operations, and this
cannot be implemented as described in the previous sections as one does not
modify the backend DBMS. It is however possible to the clustering scheduler
alread present in Sequoia to avoid concurrently scheduling base-level and
meta-level operations to the backend, thus precluding conflicts. The effort
required to implement was as follows: the size of the generic portion of Se-
quoia is 137238 lines, which includes the controller and the JDBC driver.
Additionally, Sequoia contains 29373 lines implement plugable replication
and partitioning strategies, that we don’t use. In the controller, 7 files of
code were changed by inserting 180 lines and deleting 23 lines and 8625 lines
of code were added in new files.

Discussion The first interesting conclusion is that the proposed interfaces
have been implemented in three very different scenarios with a consistently
low intrusion in the original source code. This translates in low effort both
when implementing it but also when maintaining the code when the DBMS
server evolves. Note also that a significant part of the additional code is
shared, as it is the definition of the interfaces (6144 lines). There is also a
firm belief most of the rest of the code could also be shared, as it performs the
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same container and notification support functionality. This has not happened
as each implementation was developed independently and concurrently. A
second interesting conclusion is that the amount of code involved in develop-
ing a state-of-the-art server-wrapper is in the same order of magnitude as a
full-featured database (i.e. hundreds of Klines of code). It is further evidence
that relying on this strategy is not cost-effective. In comparison, implement-
ing the proposed interface involves 100 times less effort as measured in lines
of code.

6 Performance

In this section we evaluate the performance of one prototype implementation
of the proposed interface in PostgreSQL, which illustrates the performance
of the GAPI implementation. The purpose of the evaluation is to assess
the overhead introduced. It is important to evaluate also the overhead of
the introduced changes when not in use, which if not negligible is a major
obstacle to the adoption of the proposed architecture.

We use the workload generated by the industry standard TPC-W bench-
mark [11, 20]. TPC-W defines an Internet commerce environment that re-
sembles real world, business oriented, transactional web applications. The
relatively heavy weight transactions of TPC-W make CPU processing the
bottleneck. In addition, we use only the Ordering Mix, which has 50% read-
only transactions and 50% update transactions. The average size of an up-
date transaction write-set in TPC-W is 275 bytes. We used 100 emulated
browsers, that allows us to provide a realistic amount of concurrency, without
overloading the server and thus the latency closely reflects processing over-
head. If a very small concurrency level was used, concurrency bottlenecks
would not be noticed. If a very large number of concurrent clients was used,
latency would show mainly contention and not overhead.

The following scenarios were tested: (i) Unmodified DBMS is the original
DBMS, without any modification, serving as the baseline; (ii) DBMS + patch
is the modified DBSM, as described in the previous section, but without any
meta-level objects and thus with all reflection disabled. Ideally, this does
not introduce any performance overhead; (iii) DBMS + without write-set
is the modified DBMS with listeners registered for transactional events and
statements. This means that each transaction generates at least 3 events and
(iv) DBSM + all listeners is the modified DBMS with listeners registered
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Mean latency (ms) Std. Dev. # Samples
PostgreSQL 1.766 1.882 50464

PostgreSQL + patch 1.922 1.430 50574
PostgreSQL + without write-set 2.718 1.501 50528

PostgreSQL + all listeners 3.016 1.884 50554

Table 1: Benchmark results.

for transactional events, statements, and all modified tuples. This causes a
variable number of meta-level events allowing the capture of all modifications.

The results are presented in Table 1. Looking at the results, when no
meta-level objects are configured it is not possible to conclude that the pro-
posed modifications introduce a big overhead, given the standard deviation
observed. However, the impact of registering meta-level objects is notice-
able, as this causes several round-trips to the external PL/J server process.
This is most notable when collecting the write-set. It is however acceptable,
especially as the PostgreSQL architecture makes it the worst case scenario
for implementing the proposed interface.

7 Conclusions

Recent developments in database replication and clustering have been plac-
ing new demands on DBMS interfaces. Current attempts to satisfy these
demands, such as patching the database kernel or building complex wrap-
pers, require a large development effort in supporting code, cause avoidable
performance overhead, and reduce the portability of replication middleware.
Ultimately, that lack of appropriate interfaces to support third-party repli-
cation protocols is a serious obstacle to research and innovation in replicated
databases. In this paper we address this issue by proposing a reflective archi-
tecture and interface that exposes transaction processing such that it can be
observed and modified by external replication protocols. Instead of creating
ad-hoc hooks for known replication protocols, we rely on an well known ab-
straction for transaction processing which should provide a solid foundation
for extensibility. The contribution is then as follows:

First, by explaining how a number of different replication algorithms fit
our proposed model, we have shown its usefulness. These include the state-
machine approach, the primary-backup approach (both synchronous and
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asynchronous), certification based approach, as well as heterogeneous repli-
cas. Second, by implementing the proposed interface on three different and
representative architectures, the Apache Derby and PostgreSQL databases
as well as the Sequoia server wrapper, we have shown that the approach is vi-
able and cost-effective. Finally, by benchmarking the PostgreSQL prototype
using the industry standard TPC-W benchmark, we have shown that the
proposed approach results in very low overhead when implemented within
the database server, even when the server’s architecture does not match the
proposed abstraction as happens with PostgreSQL.

Prototypes described in this paper are published as open source, can be
downloaded from the GORDA project’s home page, examined, and bench-
marked. A modular replication framework that builds on the proposed archi-
tecture and thus runs on PostgreSQL, Apache Derby, or any DBMS wrapped
by Sequoia, is also available there.
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