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Abstract Range queries, retrieving all keys within

a given range, is an important add-on for DHTs, as

they rely only on exact key matching lookup.

In this paper we support range queries by way of

a tree algorithm, Decentralized Balanced Tree, that

runs over any DHT system. Our algorithm is based

on the B+ tree design that efficiently stores clustered

data while maintaining a balanced load on hosts. The

internal structure of the balanced tree is suited for

range queries operations over many data distribu-

tions since it easily handles clustered data without

losing performance.

We analysed, and evaluated our algorithm under

a simulated environment, to show it’s operation scal-

ability for both insertions and queries. We will show

that the system design imposes a fixed penalty over

the DHT access cost, and thus inherits the scalability

properties of the chosen underlying DHT.

1 Introduction

DHT systems [1–4] are used as efficient distributed
dictionary implementations, offering a scalable and
robust P2P framework that efficiently locates objects
given a key [5]. However, such efficiency is achieved
by an exact key matching lookup interface. The dis-
crete key lookup interface uses an hash function on
the key value to locate objects. This hash function re-
moves the locality property from keys which restricts
it’s use for range queries. A range query consists in
retrieving all keys that fall within a specific range
interval. Range query is a desired feature when using
data that is indexed by contiguous values (consider
for example, numeric spatial coordinates).

Previous systems have offered the range query
feature, either using specially designed structures [6–
8] or building on top of generic DHTs [9–11]. Because
the first class of systems are bound to some particular
basic storage structure, they offer a limited solution
that may not be as efficient as some DHT systems
are. This makes the second class of systems, building
a tree structure over a generic DHT, the most flexible

choice. By building on a generic DHT, one can choose
the best DHT implementation available for the sys-
tem, while maintaining the range query functionality.
However, recent structures available in the literature:
Prefix Hash Tree (PHT) [9] and Distributed Segment
Tree (DST) [11], are sensitive to clustered data.

Clustered data is common on real data sets, in
particular when data depicts geographical placement
of items that are tied to human activity. For instance,
the concentration of WiFi access points is clustered
around cities and along roads [9], so that sharing
access point locations and querying for nearby access
points will yield a response depicting clustered data.

This steams from population concentration pat-
terns, where clustered data typically follows a power-
law distribution, or a combination of power-laws cen-
tered on several focus points [12]. This common set-
ting depicts a few higher density key regions while
most of the data is sparsely distributed across the
key domain.

In this paper we show that the Decentralize Bal-
ance tree (DEB tree) algorithm, an algorithm based
on the B+-tree design [13,14], offers a structure suit-
able for storing clustered data on block oriented stor-
age (in this case a DHT) while supporting range
queries without loss of performance.

The algorithm is capable of running on top of
any generic DHT without incurring in a significant
overhead. Insertions can be reduced to O(1) complex-
ity in terms of DHT operation requests, if caching
is used at clients. Each DHT request cost depends
on the DHT implementation selected. In this sense,
the scalability of the tree design closely follows the
scalability properties of the used DHT.

Query cost depends on the data stored on the
index rather than on the range size. Additionally, it is
possible to parallelize the query operation, reducing
latency to a logarithmic factor on the stored data size
in terms of DHT operations.

2 Related Work

Related work can be divided into two groups:
range query systems with specific underlying struc-
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tures and range query systems using a tree struc-
ture over a generic DHT interface. Due to space re-
strictions we will focus on the later group and only
provide a brief mention to some systems in the first
group.

Mercury [6] supports multi-attribute range queries
using a circular overlay, similar to Chord, but with-
out key hashing, so that locality is preserved. Skip
graphs [7] are a generalization of skip lists in which
nodes are part of distributed linked lists that form a
distributed binary tree. Both systems use a specific
routing algorithm to achieve data locality but cannot
use one-hop DHT algorithms or DHT extensions for
efficiently handling load balancing or churn.

Chawathe et al. proposed the use of a Prefix Hash
Tree (PHT) for building a trie-based structure over
a generic DHT [9]. The main difference between the
PHT and DEB tree is that our structure is not sensi-
ble to clustered data. The PHT, in order to adapt to
clustered data places leaves at different tree levels,
causing an irregular tree structure that has impact
on the query performance. Data is placed on tree
nodes according to a prefix value, which is also used
as the block identification scheme. Since the identifi-
cation scheme is independent from the data itself, it
is possible to access any tree block directly without
knowing the tree structure in advance. On the other
hand, this independency between data and block ids
can create overloaded blocks storing a large number
of objects that share a common prefix value. Our
algorithm adapts efficiently to clustered data distri-
butions, creating a balanced tree with bounded block
sizes, but cannot directly access any block without an
initial tree traversal.

Zheng et al. presented a Distributed Segment Tree
(DST) algorithm, also running over a generic DHT
[11]. This binary tree structure is static, where all tree
nodes have a pre-defined range limit. Static range
limits are incapable of handling clustered data prop-
erly, possibly generating either empty or overfull nodes
depending on the key distribution. Just like on the
PHT, the block identification does not depend on the
data, allowing direct access to any tree node. This
algorithm allows access to any block directly, a fea-
ture that is used on queries to reduce the number of
accesses by replicating data on additional tree nodes.
This design is very efficient for small queries, at the
cost of using more storage. However, when using clus-
tered data, even queries for a small range can produce
large results, requiring additional accesses.

Our tree algorithm assigns node ranges dynami-
cally according to the data distribution, which tends
to create a good storage distribution for data even in
presence of strong clustering. Furthermore, queries

do not make redundant accesses to the tree but in-
stead access only the minimum nodes necessary to
retrieve the (complete) answer.

3 Decentralized Balanced Tree

In this section, we will review the DEB tree al-
gorithm, which was described in [15], and show how
it can be adapted under a generic DHT to support
range queries.

3.1 Tree Structure

The tree structure, following the B+-tree design,
is made from leaf and internal blocks. Leaf blocks
contain data items stored on the tree while internal
blocks contain only references to children blocks. All
leaf blocks are at the same tree level, that is, all leaf
blocks are at the same distance from the root. This
feature creates a logarithmic bound on the number
of block accesses to reach any leaf block.

To maintain high availability even during tree
structure maintenance, each block keeps a next block
reference, that points to the consecutive block at the
same tree level [16]. The block size is bounded by the
block’s maximum size parameter s. Every block must
have at least s/2 items and at most s items, except
the root block which only has the maximum bound
[14]. Additionally, each block contains a limit interval
(minimum and maximum values) that specifies the
range of data the block is responsible for.

3.2 DHT mapping

We use a single DEB tree to store the entire index
data. The support for multiple spaces or dimensions
can be obtained using one of two methods: 1) using
multiple trees or 2) using a space-filling curve func-
tion. The support for multiple trees requires the ca-
pability to distinguish blocks of different trees on the
same DHT key domain. A single tree can only store
and compare values (or range intervals) on a linear
space. Storing n-dimensional data on the system is
possible by mapping the n-dimensional space into a
single-dimension space with a space-filling curve [9].

Each tree block is stored on the DHT host respon-
sible for the hash value of the block id. Although
block ids are generated dynamically, they must be
globally unique (on the DHT key domain) and not
collide or force the change of an already existing
identification. This would require moving the block’s
data on the DHT and updating all the references on
other blocks pointing to it.

The block identification is defined as the tuple:
〈level, minlimit〉, where the level field identifies the
tree level this block is and the minlimit distinguishes
the block inside the level.
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3.3 Operation Request Model

Access to block data uses the typical put and get

DHT interface. The modification of a block’s content
requires a three cycle procedure at the caller: get–
execute–put operations. For each block access, a get

operation must be issued to retrieve the block’s data
from the DHT to the caller. If the data is modified,
an additional put operation must also be issued to
store the new data on the DHT. This design was
used by both PHT and DST to implement a tree
structure on top of a generic DHT, like the OpenDHT
system [17]. However, unlike the previous structures,
the DEB algorithm does not support concurrency on
some operations. To operate correctly, the algorithm
requires some mechanism to detect concurrent mod-
ifications of the same object, in this case the block’s
content.

We propose a simple extension to the get and
put semantics: to include a logical time stamp pa-
rameter, so that concurrent puts can be detected
and prevented from happening. This extension would
work as follows. When a get is made, the current time
stamp, an integer, is returned together with the data.
When a put is made, the caller sends an increased
time stamp value, indicating a modification. If an-
other caller has, in the meantime, already putted a
new value for that key, the DHT host receiving the
put request can detect that both puts are concurrent
and abort the second.

4 Index User Interface

In this section we will describe the two index op-
erations available to the user: insertions (or removals)
and range queries. The user calls these operations to
store or retrieve data items from the system. Each
client host must explicitly store data in the system
so that it can be later retrieved by range queries.

4.1 Insertion and Removal

The insertion operation stores a data item into
the index. Data items consist on two fields: 1) the
location key, which places the item on the space and
2) the data item value, that will be fetched if it’s loca-
tion is contained inside range queries. In order to in-
sert a data item into the tree, the insertion operation
must first locate the correct leaf block by performing
a top-down traversal of the tree and then adding the
new data to the leaf content’s. The removal of an
item from the tree is identical to the insertion except
for the removal of the item on the leaf block. When
leaf blocks get full, the caller must also perform a
split operation on the block by transferring half of
the data to a new block. We omit here the details of
the split operation.

4.2 Range Queries

A range query for the [s, t] interval consists in re-
trieving all the items on the tree whose locations are
contained in the interval. These items are stored on
leaf blocks, whose limits intersect the range interval.
Since blocks are ordered by their limits on every tree
level, retrieving these blocks is made in two phases:
1) locate the first leaf block whose limits contain s,
2) follow the next block reference sequentially until
the block’s interval is greater than t. Each tree block
access requires a get DHT operation to retrieve the
block’s content.

The sequential procedure requires a vertical tree
traversal to locate the first leaf but the leaf retrieval
only depends on the number of stored items belong-
ing to the range interval rather than on the size of
the query range itself. To reduce the query latency, it
is possible to parallelize block accesses by having the
client retrieve simultaneously tree blocks belonging
to the same level that intersect the range interval.
This procedure reduces the latency to a logarithmic
factor on the number of stored items (the tree height)
while maintaining the same number of leaf accesses.

4.3 Internal Block Caching

User oriented operations, insertions and queries,
always require a tree top-down traversal from the
root block to reach the target leaf block. We eliminate
the bottleneck on upper level blocks by caching in-
ternal blocks at the callers. Caching reduces the top-
down traversal cost while maintaining the operation’s
correctness as internal blocks serve only for location
purposes. Furthermore, even if stale cached versions
are used, the caller either succeeds in finding the
correct block or invalidates it’s local cache passively
requesting the actual block.

5 Simulation

We implemented the DEB tree algorithm over a
custom-made simulator in Python. The basic DHT
functionality was simulated using a local storage. How-
ever, using a real DHT platform like OpenDHT would
be quite straightforward except for the concurrency
issue already described.

The simulation data was synthetically generated
using either uniform and power-law distributions in
order to determine the impact of clustered data on
the algorithm. In the clustered case we considered
a small number of focus points of clustering chosen
uniformly at random.

Points are randomly allocated to the left and right
of the focus points under a Pareto distribution with

density f(x) = kb
k

xk+1 . We used a shape parameter k =
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Fig. 1 The data point distribution for a five cluster
configuration.
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Fig. 2 Log-log rank order.

0.5 and set the minimum x to be 1 by making b = 1.
Each random value obtained from the distribution
was decremented by 1 (transforming the range from
[1, +∞[ to [0, +∞[) and either added, or subtracted,
to the position of a focus point. The resulting data
set mimics the usual distribution of population in a
geographic linear space.

5.1 Insertion

The insertion simulation consisted in placing 216

points within a 220 linear space (≈ 106) into the
system sequentially and determine the adaptation
of the algorithm to clustered and uniform data. We
used two data distributions for the insertion points:
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Fig. 3 ECDF (Empirical Cumulative Distribution Func-
tion) on the number of stored items per block.

an uniform distribution and a five cluster distribu-
tion. Figures 1 and 2 show some details of an ac-
tual five cluster sample. The first Figure shows the
concentration of points in the linear space and the
second shows rank ordered point densities. Here we
can observe the five clusters and the expected lin-
ear decrease of point densities in a log-log scale, the
graphical signature of power-laws.

We ran the simulations for three maximum block
sizes: 64, 256 and 1024 items, and repeated each
experiment 50 times to exclude random variations.
The DHT is simulated and we assume that the DHT
hash function uniformly distributes blocks across the
system hosts.

Figure 3 shows the ECDF on the (average) num-
ber of stored items per block. The tree algorithm bal-
ances data perfectly, as we can see that simulations
using the same block size but with different data dis-
tributions, whether uniform or clustered, tend to cre-
ate identical ECDF’s. The block usage, the number of
stored items per block, varies between 50% and 100%
of the block size with the single exception of the root
block. The largest block size case, 1024, shows two
clusters: one around half the block size and the other
around the full block size. This clustering is due to
the number of inserted points being large enough to
split blocks but small enough to fill them completely.
A greater number of points (� 216) would make the
1024 line more similar in shape to the 256 and 64
lines.

To insert a single item on the tree, a vertical tree
traversal is made, requiring the access to one block
for each level. The cost of insertions is therefore equal
to the tree height. The tree height h is defined by the
expression h ≤ log

t

n+1

2
where 2t is the block size and
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Block Data Gets Items/Gets
Size Dist. mean s-d mean s-d

64 unif 222.1 171.6 42.9 3.5
clust5 245.7 308.7 23.6 19.7

256 unif 59.2 46.1 152.9 25.1
clust5 63.6 77.4 82.3 81.2

1024 unif 15.2 11.4 559.8 142.1
clust5 16.9 20.2 306.2 314.0

Table 1 The simulation of a query set over different stor-
age distributions (uniform and five clusters) and different
block sizes: 64, 256, 1024 items. The results measure the
mean and standard deviation of the number of DHT gets
made and the ratio between the items retrieved versus
the number of gets per query.

n is the number of stored items. We measured the
tree heights for all simulations, resulting in 3 levels
for trees with block sizes of 64 and 256 items, and 2
levels for the 1024 item block size case.

5.2 Range Query

We generated a set of 500 range queries using a
middle point and a range size around that middle
point. The middle points were generated from an
uniform distribution on the linear space. The range
size was generated from a normal distribution with
0 mean and a standard deviation of 5% of the space
length. We measured query performance as the num-
ber of leaf blocks that had to be retrieved in order
to obtain a complete answer. We did not take into
account internal blocks since their cost is constant
for all queries, equal to h − 1 DHT accesses. Clients
can cache internal blocks locally, removing the height
traversal cost. Furthermore, queries can be paral-
lelized for each tree level, reducing query latency to
the tree height in the number of hops at the cost of
increased bandwidth.

Table 1 shows the results of simulations with two
different insertion point distributions (uniform distri-
bution and five cluster distribution) and three max-
imum block sizes: 64, 256 and 1024 items.

We used the same query set for all simulations.
Measured the mean and standard deviation of the
number of DHT get calls (on leaf blocks) and on
the ratio between items retrieved and gets made per
query. Since we used the same insertion set for sim-
ulations with the same insertion data distribution,
these simulations returned the same results no mat-
ter what the block size was (an average of 9855 items
for the uniform case and 10913 average items for the
clustered case).

As the block size increases, we see that the mean
number of DHT gets necessary to reply the query

decreases, along with it’s standard deviation, since
larger blocks are capable of returning more data.
The mean ratio also increases because of the greater
block capacity, where each get request returns more
items. However, the ratio standard deviation also in-
creases, meaning that queries obtain increasingly dif-
ferent amounts of items per get on each query. This
can be explained by the larger block capacity storage
distribution, where the size of blocks is distributed
between half and full maximum size. Larger block
capacities will generate blocks spawning a wider load
variation, which is reflected on the different number
of items each block returns and consequently on the
ratio’s standard deviation.

Table 1 also compares the algorithm efficiency
when running a query set on point data created by
an uniform distribution or a five cluster distribution.
As expected, the number of gets per query where
about the same for both distributions. However, the
standard deviation was greater in the clustered case.
An uniform distribution is likely to return the same
approximate number of items for queries across all
the linear space, whilst the same queries on a clus-
tered distribution are likely to have more disparity
on the number of items returned depending on the
density of stored data at the query range area, hence
the higher standard deviation.

The item/get ratio mean is higher for the uniform
case across all block sizes. The standard deviation, on
the contrary, is always significantly smaller. These
results show that the algorithm adapts perfectly to
the storage data distribution. When running over
uniform data, the standard deviation is low because
all queries tend to receive the same amount of re-
sults. When running over clustered data, the higher
standard deviation shows that the algorithm returns
different amounts of data for the same query set,
which is in accordance to the clustered distribution
of data with many sparse regions and a few highly
dense regions.

6 Conclusion

In this paper we show how our DEB tree algo-
rithm, which is based on balanced trees, can easily
provide a scalable range query implementation over
generic DHT systems.

The solution induces an even distribution of items
per DHT block and consequently balances the stor-
age and network load on the hosts that support the
DHT. We have considered two opposite data sets, one
with data uniformly distributed in space and another
exhibiting highly clustered data. These two scenar-
ios induce almost indistinguishable patterns of data
allocation in the DHT, depicting similar ECDFs.
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Finally, we considered the effects of a typical range
query scenario. Users query for items (e.g. WiFi ac-
cess points) within a given spatial distance of their
current location. The choice of maximum block size is
the driving factor that dictates the number of DHTs
requests that are needed for a given usage pattern.
An optimal size must take into account not only
the expected usage pattern, but also the number of
stored items and the combined effects of caching and
concurrent DHT gets.

This approach presents a clear advance over pre-
vious systems by providing a design that is mostly
insensitive to the presence of clustered data, while
building on of-the-shelf DHT middleware.
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