
Evaluating Throughput Stability of Protocols for
Distributed Middleware�

Nuno A. Carvalho, José P. Oliveira, and José Pereira

Universidade do Minho

Abstract. Communication of large data volumes is a core functionality of
distributed systems middleware, namely, for interconnecting components, for dis-
tributed computation and for fault tolerance. This common functionality is how-
ever achieved in different middleware platforms with various combinations of
operating system and application level protocols, both standardized and ad hoc,
and including implementations on managed runtime environments such as Java.
In this paper, in contrast with most previous work that focus on performance,
we point out that architectural and implementation decisions have an impact in
throughput stability when the system is heavily loaded, precisely when such sta-
bility is most important. In detail, we present an experimental evaluation of sev-
eral communication protocol components under stress conditions and conclude
on the relative merits of several architectural options.

1 Introduction

Communication protocols used as components in distributed systems middleware range
from the ubiquitous UDP/IP and TCP/IP Internet standards to custom protocols de-
signed to address different reliability, ordering, performance, resource usage, and re-
silience requirements. In particular, multiparty or group communication protocols have
been traditionally implemented at the application level and been highly relevant to mid-
dleware, for instance, to keep track of operational servers in a cluster and support load
balancing of processing tasks across server clusters.

There has in fact been an increasing interest in group communication protocols such
as JGroups [1], Spread [2] or Appia [3] in middleware supporting current multi-tier ap-
plications, towards both higher throughput and stricter consistency requirements. An
example of this trend is the distributed software transactional memory proposed for
FénixEDU [4]. Instead of relying solely on the underlying shared database management
system to enforce consistency across different servers, updates are propagated and im-
plicitly ordered using group communication. Another example is consistent database
replication [5]. This allows concurrent conflicting updates to be processed by different
replicas without fine synchronization thus enabling high performance. However, it en-
sures that all transactions are serialized and thus no conflicting updates are committed,
avoiding the need for reconciliation or explicit sharing easing application development.

� Partially funded by FCT through projects SFRH/ BDE/ 33304/ 2008 and PTDC/ EIA/ 72405/
2006 (Pastramy), by PT Inovação S.A., and by ParadigmaXis S.A.

R. Meersman, T. Dillon, P. Herrero (Eds.): OTM 2009, Part I, LNCS 5870, pp. 600–613, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Evaluating Throughput Stability of Protocols for Distributed Middleware 601

In fact, the motivation for this work was sparked by experimental observations when
building and testing the ESCADA Replication Server,1 a modular database replication
protocol. Briefly, the testing setup used a cluster of servers, each running a PostgreSQL
replica and ESCADA, with the workload of the TPC-C benchmark [6]. Under this sce-
nario, one would observe that update dissemination would eventually slow down and
the number of updates stored in memory grow. This was surprising, since the band-
width being generated was easily achieved by a standalone benchmark of the group
communication protocol in the same hardware setup.

This paper aims at explaining why the group communication within the larger appli-
cation scenario would perform worse than in the standalone benchmark by testing the
following two hypotheses:

– By running within a Java application with a large memory heap (i.e. the ESCADA
Replication Server), the group communication protocol has to compete for memory
with other threads, as the garbage collector represents an increasing share of the
computation taking place.

– By running along a large number of interactive processes (i.e. instances of the Post-
greSQL server) which together consume a substantial share of CPU bandwidth, the
group communication has to compete for time slices.

Either way, the communication protocol would be unable to schedule events timely, for
instance, to deal with window-based retransmission [7] implemented at the user level.
This would prevent the protocol from fully exploiting available network bandwidth.

If true, this has an impact on architectural decisions when designing or selecting
group communication protocols. Namely, a protocol made available as a library in Java
should be particularly susceptible to the first. Any protocol that implements window-
based mechanisms at the user level, regardless of using Java, is susceptible to the
second. If true, this poses a challenge to using group communication in large servers
running Java virtual machines with large heaps (e.g. application servers) or pools of
interactive daemons (e.g. web or database servers).

Moreover, an in-depth knowledge of the dynamics of communication protocols in
various workload conditions is also key to enabling self-managing distributed systems.
In detail, being able to operate large and complex multi-tier applications depends on
being able to ensure that individual system components are kept within their capacities
to prevent congestion and trashing phenomena. If models underlying the creation of
rule sets are unaware that communication capacity is degraded by server workloads, the
resulting policies will be unable to keep the system within safe boundaries.

The rest of the paper is structured as follows. Section 2 we describe the commu-
nication protocols that we are evaluating and Section 3 we introduce our experimen-
tal setting. In Section 4 we present results that test each of the hypotheses. Finally,
Section 5 discusses related work and Section 6 concludes the paper.

2 Protocols

To assess the stability of communication protocols for distributed middleware we select
three kinds of protocols: point to point with network stack at kernel mode, such as

1 http://escada.sf.net

602 N.A. Carvalho, J.P. Oliveira, and J. Pereira

Transmission Control Protocol (TCP) [7] or User Datagram Protocol (UDP) [8]; point
to point with network stack at user mode, like LimeWire RUDP [9] or ENet [10]; and
group communication protocols, such as Appia [3] or JGroups [1].

2.1 Point-to-Point in Kernel Mode

Simple point-to-point protocols implemented within the operating system kernel pro-
vide a baseline for comparison. First, the dynamics of TCP/IP in a number of environ-
ment conditions is well known and its implementation in mainstream operating systems
is thoroughly tested and optimized. Second, because application level protocols are built
on them, frequently on UDP/IP, and incur at least in the same overhead. Thus whenever
possible, we test multiple APIs in C and Java, to discover also the impact of the Java
Virtual Machine (JVM).

In detail, TCP protocol was assessed with three interfaces: the native BSD sockets
interface in C, Java using java.net package and Java using java.nio package.
Whenever possible, the same buffers are used for multiple I/O operations to reduce
memory management overhead. In java.nio, direct byte buffers are used as the doc-
umentation describes them as improving performance.

The UDP protocol was evaluated in two implementations, C and Java using the
java.net interface. Note however that UDP is not reliable and thus the amount of
data sent differs from the amount of data received. This makes the tests useful only to
determine baseline overhead.

Finally, the Stream Control Transmission Protocol (SCTP) [11] is aimed at com-
bining the best features of TCP and UDP, ensuring the delivery of messages with or
without order, has congestion control, allows the use of multiple streams and multi-
homing. These features can be switched on and off in contrast to the existing on TCP
and UDP, and in this paper, a configuration similar to TCP has been selected.

2.2 Point-to-Point in User Mode

These protocols should provide an interesting indication of the cost of implementing
reliability in user mode and in Java, when compared with point-to-point protocols in
kernel. They should also provide an indication of the cost of group communication,
when compared to such protocols.

The LimeWire application, implemented in Java, client of the Gnutella network, was
the selected implementation for the evaluation of the Reliable User Datagram Proto-
col (RUDP), a lightweight version of TCP, whose features are: guaranteed delivery of
messages, congestion control and retransmission of lost packets.

The ENet [10] protocol, reliable and in-order communication on top of UDP, was
evaluated through their implementations in C and Java [12]. The evaluated versions
were 1.1 and beta1, respectively.

2.3 Group Communication Protocols

Appia [3] is an open source layered communication toolkit implemented in Java pro-
viding extended configuration and programming possibilities. The Appia toolkit is com-
posed by a core that is used to compose protocols and a set of protocols that provide

Evaluating Throughput Stability of Protocols for Distributed Middleware 603

group communication, ordering guaranties, atomic broadcast, among other properties.
Appia is a protocol kernel that offers a clean and elegant way for the application to
express inter-channel constraints. In assessing this toolkit only one process writes the
data and another reads it, creating a point-to-point channel in the group membership.
The evaluated version was 4.1.0.

JGroups [1] is a group communication toolkit implemented in Java, which offers
reliability and group membership on top of TCP or UDP. Its most powerful feature is
its flexible protocol stack, which allows developers to adapt it to exactly match their
application requirements and network characteristics. Like Appia, was selected for this
evaluation to measure the impact of increased network stack, particularly being it in
user space. Once again, in assessing this toolkit only one process writes the data and
another reads it, creating a point-to-point channel in the group membership. The evalu-
ated version was 2.6.3 GA.

Spread [2], another group communication toolkit, consists of a library that user ap-
plications are linked with, in this evaluation our application was implemented in Java,
and a binary daemon which runs on each computer that is part of the processor group.
In this combined implementation, which delegates the communication work to other
process, we are particularly interested in observing the impact of the Garbage Collector
in throughput stability. The evaluated version was 4.0.0.

3 Experimental Setting

3.1 Hardware and Software

The experimental evaluation described in this paper was performed using two HP Pro-
liant dual Opteron processor machines with the configuration outlined in Table 1. The
operating system used is Linux, kernel version 2.6.22-16, from Ubuntu. The C programs
are compiled with GCC 4.1.3 without any special flags. The Java based evaluations are
compiled and run with Sun’s Java 1.6.0_03. The availability of multiple CPU cores al-
lows us to assess also the ability of protocols to take advantage of this features, which
is increasingly important in current hardware configurations.

3.2 Measurements

A run consists in having one process sending messages as fast as allowed by the com-
munication protocol (i.e. the Writer process), while in a different machine another
process reads them also as fast as possible (i.e. the Reader process). No artificial de-
lays are inserted in any of them. Although experiments have been reproduced with

Table 1. Configuration used for benchmarking

Resource Properties
Processor 2 × 2.4 GHz AMD Opteron (64 bits)
RAM 4 GBytes
Operating System Linux 2.6.12-16 (Ubuntu Kernel)
Network Gigabit Ethernet

604 N.A. Carvalho, J.P. Oliveira, and J. Pereira

different sizes, this paper includes only results obtained by writing and reading data in
2000 bytes chunks. Test machines are otherwise idle, to avoid disturbing measurements.

Measurements are done concurrently by running Dstat [13] every second. Dstat is a
standard resource statistics tool, which collects memory, disk I/O, network, and CPU
usage information available from the operating system kernel. All measurements there-
fore include all load on each of the machines. These are saved to a log file and later
processed off-line to extract the results presented in the paper.

Each run lasts 10 minutes. Communication starts after 4 minutes. Measurements
during the first 4.5 minutes and the last 30 seconds of each run are discarded. This
allows background workload generators to warm up and wind-down without impacting
results. When fully automated, test runs described in this paper take approximately 10
hours to run and produce 15GBytes of log files.

3.3 Background Workload Generators

The first competing background workload generated aims at reproducing the conditions
in a loaded server, in which a large number of processes or threads alternate between

 0

 128

 256

 384

 512

 0 1 2 3 4 5 6 7 8 9 10

H
ea

p
S

pa
ce

 U
se

d
(M

B
)

Time (minutes)

Reader
Writer

(a) Java heap size

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9 10

C
P

U
 U

sa
ge

 (
%

)

Time (minutes)

Reader
Writer

(b) CPU usage (100% means fully using 2 cores)

Fig. 1. Resource usage with the Garbage Collector workload

Evaluating Throughput Stability of Protocols for Distributed Middleware 605

idle and busy periods and compete for CPU. Due to the common operating system
scheduler policy of favoring interactive processes, this workload cannot be duplicated
simply by having a single background process in an infinite loop. Instead, we use the
operating system clock to determine at each time what share of the CPU has been used
and have a pool of processes alternate between idle and busy periods to meet the desired
CPU occupancy. This strategy affects all processes, because the load is imposed on the
scheduler, which is also affecting processes in kernel mode.

The second competing background workload generator aims at reproducing the con-
ditions in a loaded Java based single virtual machine server, in which a large heap is being
managed. Due to common garbage collector optimizations, it is not enough to simply al-
locate memory in tight loop, since every allocation is short lived and favors generational
garbage collectors. Instead, we build random linked structures such that probabilistically
some elements become unreferenced and others are added at the same rate.

In this paper we tune the parameters of this workload generator such that it uses
approximately 384MBytes out of a maximum of 512MBytes allocated to the virtual
machine, as can be observed in Fig. 1(a). The resulting usage of CPU is shown in
Fig. 1(b), which shows the garbage collector workload alone up to minute four and then
the cumulative effect of a test run with a TCP/IP socket. The target CPU occupancy of
the CPU workload generator was then set at 60%, to allow direct comparison with the
garbage collector workload generator. Note that this corresponds to slightly more that
the load that one to the two cores can handle.

4 Results

4.1 Unstable Protocols

Unfortunately we were unable to make all target group communication protocols run
the proposed test successfully. Namely, Spread daemons would disconnect either the
sender or the receiver and we were unable to finish any test run. This behavior is well
known and expected, having been thoroughly discussed in the supporting mailing list,
since Spread does not do end-to-end flow control and expected the application to do it.
We were also unable to reliably complete test runs with the Appia protocol, although it
has end-to-end flow control implemented by “memory managers”. It would either block
or crash with out-of-memory errors.

The same problem happened with some of the point-to-point protocols being used for
comparison. Namely, both implementations of eNet would consume an ever increasing
amount of memory at the sender, leading to trashing or an out-of-memory crash. The
LimeWire RUDP protocol, although stable, would not be able to use a significant por-
tion of the available bandwidth and thus does not provide an interesting comparison. We
do however understand that this is most likely a design decision and not a bug, since
the typical usage of Limewire RUDP will have multiple concurrent connections over a
single residential network link (e.g. ADSL).

4.2 Scenario 1: No Competing Workload

Running all protocols without any competing background workload provides a baseline
for later comparison as well as a first measurement of the resources required to saturate
the 1GBits network. The results are shown in Fig. 2 and Fig. 3.

606 N.A. Carvalho, J.P. Oliveira, and J. Pereira

Fig. 2. Bandwidth usage without background workloads

(a) Measured at the Writer process.

(b) Measured at the Reader process.

Fig. 3. CPU usage without background workload (100% represents the two CPUs of the machine)

Evaluating Throughput Stability of Protocols for Distributed Middleware 607

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

● ●●●●●●●●●●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

●●●
●●●●
●●● ●●●●

●●●●●●
●●●●

●●●●●
●●●●●●

●●●●
●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●● ●●●●●●●● ●

●●●
●●●●
●●● ●●●●

●●●●●●
●●●●

●●●●●
●●●●●●

●●●●
●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●● ●●●●●●●● ●

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

●●●
●●●●
●●●●
●● ● ● ●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●● ● ●●●●●
●●●●●●●

●●●
●●●●
●●●●
●● ● ● ●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●● ● ●●●●●
●●●●●●●

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

● ● ●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●

● ● ●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●

TCP (Java)
JGroups (UDP)
JGroups (TCP)
TCP (C)

Fig. 4. Distribution of bandwidth in time periods

As shown in Fig. 2, bare TCP/IP and UDP/IP are always able to saturate the network,
regardless of the API being used in C or Java. However, as seen in Fig. 3, there is a large
CPU overhead when using Java even if we took care not to allocate memory for each
operation, i.e. we always write from and read to the same buffers. Using the novel NIO
interface with direct buffers does not make a noticeable impact.

Regarding SCTP, also implemented in the operating system kernel, it is interesting
to note that it does not fully saturate the network. The reason for this seems to be that
the sender is fully using one of the available CPU cores. In contrast, CPU usage seems
to be asymmetric, as the receiver is much less intensive.

Both configurations of JGroups tested are unable as well to saturate the network.
Again, the reason seems to be that the sender fully uses one of the two available CPU
cores and is unable to exploit the second. Interestingly, the TCP/IP configuration is able
to achieve slightly higher throughput and use the second CPU core to some extent. This
is probably true as TCP/IP processing is done within the kernel and thus scheduled to
multiple cores.

Finally, besides average throughput, it is interesting to note how each option is able to
sustain such throughput stably, without variation. Fig. 4 plots the empirical cumulative
distribution function of bandwidth observed in each period of time. A straight vertical
line or steep slope denote low variance while a moderate slope or staircase denote high
variance. It can be observed that TCP in Java is more unstable than in C, and that the
UDP configuration of JGroups more unstable than the TCP one.

608 N.A. Carvalho, J.P. Oliveira, and J. Pereira

Lessons Learned: These results point out that one should make as much use of kernel
based TCP/IP as possible and avoid Java in the implementation of group communica-
tion. Otherwise, one should make the protocol multi-threaded and account for additional
CPU usage.

4.3 Scenario 2: Competing CPU Workload

As described in Section 3, this scenario adds competing background CPU workload,
thus introducing scheduling latency in user level processes. The impact on average
bandwidth is shown in Fig. 5, showing that all protocols have their throughput reduced.

Fig. 6 shows the same results as a fraction of the original maximum achieved with
each protocol, making it easier to evaluate which protocols suffer the most. The least
affected is UDP, although this is misleading since UDP is not reliable and is discarding

Fig. 5. Bandwidth usage with competing CPU workload

Fig. 6. Bandwidth degradation with competing CPU workload

Evaluating Throughput Stability of Protocols for Distributed Middleware 609

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

●●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●●● ●●●●

● ● ●●●●
●●●●●●●●

●●●●
●●●●●

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

●●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●

●● ● ●

●●●
●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●

●● ● ●

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●●●●

●●●●
●● ●●●● ●●●● ●● ●● ● ● ● ● ●●● ● ●

●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●●●●

●●●●
●● ●●●● ●●●● ●● ●● ● ● ● ● ●●● ● ●

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

●●●●
●● ●●●●

●●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●●

●●●●
●●●●
●●●●

●●●●●●
● ●●●●

● ●●●●●●●●●
●● ●●● ●●●●

●●● ●●●●●●●●● ●● ● ● ●● ●

●●●●
●● ●●●●

●●●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●●

●●●●
●●●●
●●●●

●●●●●●
● ●●●●

● ●●●●●●●●●
●● ●●● ●●●●

●●● ●●●●●●●●● ●● ● ● ●● ●

TCP (Java)
JGroups (UDP)
JGroups (TCP)
TCP (C)

Fig. 7. Distribution of bandwidth in time periods with CPU workload

some traffic. Most interestingly, SCTP is one of the protocols that is most affected, even
if it is implemented in the kernel. Moreover, the Java NIO interface performs worse that
the original Java sockets interface.

Regarding group communication protocols, the UDP configuration is much more af-
fected than its TCP counterpart. This confirms our hypothesis that it is hard to have a
retransmission algorithm in user mode when there is a competing workload and conse-
quence scheduling latency.

Finally, Fig. 7 shows that throughput stability suffers with any of the protocols, which
exhibit similar variability, confirming that there is no significant disadvantage of Java
in this scenario.

It would also be interesting to perform the experiments using a real time scheduling
class for protocol threads. This is however not straightforward for two reasons. The
protocols that need it the most, such as JGroups, are implemented as libraries and this
might require elevating the privileges of the Java virtual machine as a whole, which is
undesirable. Second, since the protocol is itself responsible for a substantial share of
CPU usage, it could seriously degrade the performance of the entire service.

Lessons Learned: These results reinforce that one should make as much use of kernel
based TCP/IP as possible in the implementation of group communication. Otherwise,
one should make the protocol multi-threaded and account for additional CPU usage.

610 N.A. Carvalho, J.P. Oliveira, and J. Pereira

4.4 Scenario 3: Competing Garbage Collector Workload

As described in Section 3, this scenario adds competing background garbage collector
workload, thus being applicable only to Java protocols. As shown in Fig. 8 the degra-
dation of all protocols except the UDP configuration of JGroups is similar to that with
the CPU workload. Recall that both workloads were tuned to consume approximately
the same amount of CPU, although performing different tasks.

Fig. 9 shows the same results as a fraction of the original maximum achievable with
each protocol. This shows that this workload is however highly problematic for the
UDP configuration of JGroups, as it is reduced to as little as 6% of its initial capacity.
This is more than enough to explain our trouble with the ESCADA Replication Server
and should be worrying to anyone using group communication. Recall that this happens
with a workload that consumes approximately only 384MB out of 2GB RAM and only

Fig. 8. Bandwidth usage with competing garbage collector workload

Fig. 9. Bandwidth degradation with competing garbage collector workload

Evaluating Throughput Stability of Protocols for Distributed Middleware 611

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

●●
●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●● ●●●●●●● ●●●●●●

●●●●●●●●●●●●●
●●●●

●●● ●●●●●●●●●●
●●●●

●●●●●
● ●●●●●

●●●●
●●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●●●

●●●●
●●●●●●●●●●

●●

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

●
●

●
●

●

●

●●●
●
●●
●●

●●●
●●
●
●●●●
●●
●●●
●●●
●●●
●●●
●
●●●●
●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●●

●

●
●

●
●

●

●

●●●
●
●●
●●

●●●
●●
●
●●●●
●●
●●●
●●●
●●●
●●●
●
●●●●
●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●●●●

●

0e+00 2e+08 4e+08 6e+08 8e+08 1e+09

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

BW (b/s)

F
re

qu
en

cy

●●

●

●
●

●●●
●●●
●●

●●●
●●
●●●
●
●●●
●●
●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●●
●●
●●
●●●●
●●●●
●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●● ●●●●●●● ●●●●●●

●●●●●●
●●●●●

●●●●
●● ● ●

●●

●

●
●

●●●
●●●
●●

●●●
●●
●●●
●
●●●
●●
●●●
●●●●
●●●●
●●●●
●●●
●●●
●●●●
●●●●
●●
●●
●●●●
●●●●
●●●
●●●●
●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●● ●●●●●●● ●●●●●●

●●●●●●
●●●●●

●●●●
●● ● ●

TCP (Java)
JGroups (UDP)
JGroups (TCP)

Fig. 10. Distribution of bandwidth in time periods with garbage collector workload

one of the two CPU cores available, as shown in Fig. 1(a) and Fig. 1(b), which should
be the nominal load expected in many servers.

Finally, Fig. 10 when compared to Fig. 7 shows that although the impact on kernel
based TCP/IP of the competing garbage collector workload seems similar to the CPU
workload in terms of average bandwidth, it introduces much more variability which
may cause additional trouble for timing sensitive applications.

Lessons Learned: These results show that implementing fine grained retransmission
protocols in Java and deploying them as a library in large applications leads to disastrous
results in terms of throughput stability.

5 Discussion

The experimental evaluation of communication protocols has been addressed by mul-
tiple previous projects focusing both the performance and dependability, including a
spectrum of real and simulated stressful environments.

Some work focused on performance evaluation [14], measuring latency and through-
put of protocols in different situations, targeting the overhead of architectural decisions
and of the Java platform. In this paper we show that such results may be somewhat
optimistic, since Java-based protocols provided as a library are more vulnerable to

612 N.A. Carvalho, J.P. Oliveira, and J. Pereira

competing workloads and thus synthetic benchmarks will not show their actual lim-
its in a real-world environment.

Work focused on JGroups [15] has shown that the performance the TCP-based con-
figuration is superior to the UDP-based configuration. This is attributed to poor perfor-
mance of the network switch with multicast. In this paper we take this further and show
that this is the case even in a point-to-point connection when no multicast is required.
Namely, we show that this might be explained also by CPU used by the protocol itself
and also by competing workloads on garbage collector and CPU.

An alternative approach has focused on the effect of a slow receiver in the throughput
of multicast protocols [16], showing that performance degradation of the group as a
whole is unavoidable, even when using state of the art protocol mechanisms. This works
was motivated by having observed the degradation in a real setting [17]. This result is
highly relevant together with our contribution, showing that our results, measured with
just two elements, will have a serious impact in larger groups.

Finally, previous work has targeting group communication protocols with a variety
of fault injection techniques, such as memory leaks at the client application level, pro-
cess hangs, abrupt crashes, and packet loss at the network level [18]. Interestingly, it
concludes also that a library-based approach is more susceptible to perturbation. How-
ever, we strengthen the result showing that perturbation occurs in normal operational
conditions without bugs (e.g. memory leaks) and even in very small groups.

6 Conclusions and Future Work

In this paper we set out to explain the poor performance of group communication pro-
tocols observed when there is a competing workload in machines participating in the
group. Based on the hypotheses that this effect might be caused by garbage collection
and scheduling latency, the first challenge overcome was to reproduce the right work-
load without having to setup large complex servers.

The benchmark results that were then achieved, comparing multiple protocols with
varying competing background workloads lead us to conclude that a protocol with (i)
a library-based design, (ii) implemented in Java, and (iii) using an user-level window
mechanism on top of UDP, result in a fragile combination that cannot sustain stable
high throughput in the presence of a moderate competing background load. Namely,
we show a configuration in which throughput is reduced to 6% of that achievable when
the system is idle. As a secondary conclusion, we have shown that there is a large
performance and resource usage gap between group communication and TCP sockets,
that exists even when doing a similar point-to-point communication task.

These conclusions pave the ground for future work in several directions. First, it is in-
teresting to reproduce the results with a wider variety of experimental settings. Namely,
using different operating systems and Java virtual machines. For instance, the novel
Garbage-First Java garbage collector [19] might have an impact in the results. Second,
it is interesting to determine exactly how competing workloads impact the throughput
of protocols. Finally, since the gap between application-level protocols and bare TCP is
so large, there is definitely room for improvement in the design and implementation of
group communication protocols that should be explored.

Evaluating Throughput Stability of Protocols for Distributed Middleware 613

References

1. Ban, B.: Design and implementation of a reliable group communication toolkit for java.
Technical report, Dept. of Computer Science, Cornell University (1998)

2. Spread Concepts LLC: The Spread Toolkit, (2009) http://www.spread.org/
3. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a flexible protocol kernel supporting multiple

coordinated channels. In: Proceedings of the 21st International Conference on Distributed
Computing Systems, pp. 707–710 (April 2001)

4. Carvalho, N., Cachopo, J., Rodrigues, L., Rito Silva, A.: Versioned transactional shared
memory for the fenixedu web application. In: Proceedings of the Second Workshop on
Dependable Distributed Data Management (in conjunction with Eurosys 2008). ACM,
New York (2008)

5. Correia Jr., A., Pereira, J., Oliveira, R.: AKARA: A flexible clustering protocol for demand-
ing transactional workloads. In: Proceedings of the International Conference on Distributed
Objects, Middleware and Appocations, DOA (2008)

6. Transaction Processing Performance Council: TPC-C. In: TPC (2009)
7. Cerf, V., Dalal, Y., Sunshine, C.: Specification of Internet Transmission Control Program.

RFC 675 (December 1974)
8. Postel, J.: User Datagram Protocol. RFC 768 (Standard) (August 1980)
9. Lime Wire LLC: LimeWire (2009), http://wiki.limewire.org/

10. Salzman, L.: ENet (2009), http://enet.bespin.org/
11. Ong, L., Yoakum, J.: An Introduction to the Stream Control Transmission Protocol (SCTP).

RFC 3286 (Informational) (May 2002)
12. Vasquez, D.: JeNet (2009), https://jenet.dev.java.net/
13. Wieërs, D.: Dstat (2009), http://dag.wieers.com/home-made/dstat/
14. Baldoni, R., Cimmino, S., Marchetti, C., Termini, A.: Performance analysis of java group

toolkits: A case study. In: Guelfi, N., Astesiano, E., Reggio, G. (eds.) FIDJI 2002. LNCS,
vol. 2604, pp. 49–60. Springer, Heidelberg (2003)

15. Abdellatif, T., Cecchet, E., Lachaize, R.: Evaluation of a group communication middleware
for clustered J2EE application servers. In: Proceedings of the 2004 International Symposium
on Distributed Objects and Applications (DOA), pp. 1571–1589 (2004)

16. Birman, K.: A review of experiences with reliable multicast. Software Practice and Experi-
ence 29(9) (July 1999)

17. Piantoni, R., Stancescu, C.: Implementing the Swiss Exchange Trading System. In: IEEE
International Symposium on Fault-Tolerant Computing (June 1997)

18. Pertet, S., Ghandi, R., Narasimhan, P.: Group communication: Helping or obscuring failure
diagnosis? Technical report, Carnegie Mellong University (2006)

19. Detlefs, D., Flood, C., Heller, S., Printezis, T.: Garbage-first garbage collection. In: Pro-
ceedings of the 4th international symposium on Memory management, pp. 37–48. ACM,
New York (2004)

http://www.spread.org/
http://wiki.limewire.org/
http://enet.bespin.org/
https://jenet.dev.java.net/
http://dag.wieers.com/home-made/dstat/

	Evaluating Throughput Stability of Protocols for Distributed Middleware
	Introduction
	Protocols
	Point-to-Point in Kernel Mode
	Point-to-Point in User Mode
	Group Communication Protocols

	Experimental Setting
	Hardware and Software
	Measurements
	Background Workload Generators

	Results
	Unstable Protocols
	Scenario 1: No Competing Workload
	Scenario 2: Competing CPU Workload
	Scenario 3: Competing Garbage Collector Workload

	Discussion
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

