
Teaming Up for Software Development

Luís Soares

Departamento de Informática
Universidade do Minho

Engenharia de Aplicações

Luís Soares Teaming Up for Software Development



Introduction Agenda

In the end of the session the attendee should be able to:
Identify several super-sets of tools used in software
development labs;
Distinguish several stages in software development.

Luís Soares Teaming Up for Software Development



Introduction Agenda

Outline
Common software development pitfalls.
Concepts and Tools

Dependency management and build frameworks.
Tracking changes.
Tracking issues.
Software quality control.

A walk in the lab.
Few final remarks.
Additional links.

Luís Soares Teaming Up for Software Development



Introduction Agenda

Common software development pitfalls
Documentation almost nonexistent.
No standards.
No recorded history through project’s time-line.
Integration is not frequent.
Ad hoc testing.
Heterogeneous tool-set.

Luís Soares Teaming Up for Software Development



Best Practices Dependency Management and Build Frameworks

Dependency Management and Build
Frameworks

Luís Soares Teaming Up for Software Development



Best Practices Dependency Management and Build Frameworks

Dependency Management Definition

Keeping track of third party libraries required to
build/test/execute the project.

Build Tools Definition
Tool that relies on a set of rules to build the source code.

Doing this manually is error prone and time consuming.
Automatic dependency management removes the burden
from developers of having to synchronize libraries every
now and then among themselves.
Versions are handled gracefully.
Configure once, build anytime.

Luís Soares Teaming Up for Software Development



Best Practices Dependency Management and Build Frameworks

GNU Make
Programming language agnostic;
Dependencies statically listed and provided by the user;
Wide-spread usage (build, install, document).
Makefile: "Make uses the makefile to figure out which
target files ought to be brought up to date, and then
determines which of them actually need to be updated."

Luís Soares Teaming Up for Software Development



Best Practices Dependency Management and Build Frameworks

Apache Ant
Requires Java Virtual Machine;
Mostly used to build java source code;
Dependencies statically listed and provided by the user;
Wide-spread usage among java programmers (build,
install, deploy, document);
build.xml : "Ant’s build files are written in XML. Each build
file contains one project and at least one (default) target."

Luís Soares Teaming Up for Software Development



Best Practices Dependency Management and Build Frameworks

Apache Maven (v2)
Requires Java Virtual Machine;
Mostly used to build java source code;
Dependencies are listed by the user and downloaded
automatically;
Wide-spread usage among java programmers;
Much more: "Maven is a software project management
and comprehension tool."
pom.xml : "A Project Object Model or POM is the
fundamental unit of work in Maven. It is an xml file that
contains information about the project and configuration
details used by Maven to build the project."

Luís Soares Teaming Up for Software Development



Best Practices Tracking Changes

Tracking Changes
(Version Control)

Luís Soares Teaming Up for Software Development



Best Practices Tracking Changes

Version Control Software Definition
Software used to control multiple revisions of the same
information unit.

Version Control Benefits
Development history is preserved.
Standard integration process for the development team.
Easy to rollback in case a serious mistake is introduced.
Automatic generation of changesets between
versions/releases.
Changes are always associated with a given developer.

Luís Soares Teaming Up for Software Development



Best Practices Tracking Changes

Version Control Software Systems
Centralized:

CVS - Concurrent Versions System
Subversion - CVS Done Right!

Distributed:
Mercurial - Efficient (Mozilla, Xine, OpenSolaris)
Git - Tracks content (Linux Kernel)
Bazaar - Tracks Files (Launchpad, Ubuntu)

Luís Soares Teaming Up for Software Development



Best Practices Tracking Changes

Tracking Issues

Luís Soares Teaming Up for Software Development



Best Practices Tracking Issues

Issue Tracker Definition
Software used to report, maintain and describe issues and
work done in time.

Issue Tracking Benefits
Document changes and their motivation.
Track issues and their impact in development life-cycle.
Mean to get feedback from developers/users on the work
done.
Eases new developers/users integration by providing a
documented record of the project’s past.
When tightly integrated with the Revision Control System,
becomes a powerful bug tracking tool.

Luís Soares Teaming Up for Software Development



Best Practices Tracking Issues

Bug/Issue Tracking Applications
trac
Jira
roundup
Bugzilla
Launchpad/SourceForge/...

Luís Soares Teaming Up for Software Development



Best Practices Software Quality Control

Software Quality Control

Luís Soares Teaming Up for Software Development



Best Practices Software Quality Control

Software Quality Control
Controlling the quality of the software, resorting to tests (unit,
integration and system tests), simulation and continuous
integration.

Test-driven Development: Test early and often. Start from
an interface, a mock implementation and a unit test. End
up with a full featured implementation passing the unit
tests flawlessly.
Revision Control commits should be small. Do not be
afraid to commit often and small changes.
Build early and often. If a commit breaks a build or fails a
unit test, the problem gets detected early in the
development cycle.
Ideally, each commit should trigger new build.

Luís Soares Teaming Up for Software Development



Best Practices Software Quality Control

Continuous Integration Definition

"Continuous Integration is a software development practice
where members of a team integrate their work frequently,
usually each person integrates at least daily - leading to
multiple integrations per day. Each integration is verified by an
automated build (including test) to detect integration errors as
quickly as possible. Many teams find that this approach leads
to significantly reduced integration problems and allows a team
to develop cohesive software more rapidly.", by Martin Fowler.

Frameworks
hudson
cruise control
continuum
bamboo

Luís Soares Teaming Up for Software Development



A walk in the lab.

A walk in the lab.
(Dry-run)

Luís Soares Teaming Up for Software Development



A walk in the lab.

Setting up a development Environment using Maven2
1 mvn archetype:create -DgroupId=ea -DartifactId=calculator
2 mvn compile [test clean package]

Adding revision control
1 bzr init .
2 vim .bzrignore
3 bzr add .
4 bzr commit -m "Initial import."

Luís Soares Teaming Up for Software Development



A walk in the lab.

Issue Tracking with trac
1 sudo apt-get install trac
2 mkdir $HOME/trac.env
3 trac-admin $HOME/trac.env/calculator initenv
4 trac-admin /home/ea/trac.env/calculator/ permission add

anonymous TRAC_ADMIN
5 vi /var/www/trac.env/calculator/conf/trac.ini
6 tracd –port 8000 /home/ea/trac.env/calculator
7 create milestones (release 1.0) and tickets

Luís Soares Teaming Up for Software Development



A walk in the lab.

Continuous Integration with Hudson
1 download it from https://hudson.dev.java.net/
2 java -jar hudson
3 create build jobs

Luís Soares Teaming Up for Software Development



A walk in the lab.

Make a change, compile and commit
1 vim src/main/java/ea/SumService.java
2 vim src/main/java/ea/SumServiceImpl.java
3 vim src/test/java/ea/TestSumService.java
4 mvn clean compile test
5 bzr commit -m "Added sum service."

Implement SumService
1 vim src/main/java/ea/SumServiceImpl.java
2 mvn clean compile test
3 bzr commit -m "Implemented SumService"

Luís Soares Teaming Up for Software Development



A walk in the lab.

Teaming Up
1 Create ticket for "John Doe": Implement MultiplyService
2 bzr branch /home/ea/calculator calculator.multiply
3 ... Implement tests and MultiplyService ...
4 bzr merge calculator.multiply
5 integrate/build
6 close ticket
7 milestone completed

Luís Soares Teaming Up for Software Development



A walk in the lab.

Release
1 All milestones completed
2 Remove -SNAPSHOT tag
3 branch new trunk

Luís Soares Teaming Up for Software Development



Final Remarks.

Conclusions

Luís Soares Teaming Up for Software Development



Final Remarks.

Few final remarks.
Teaming up requires third party tools that ease
development and integration.
Investing in some tools may pose a steep learning curve at
first, but it pays off in the long run.
You are not alone! Act as a team! Use standards and
conventions that everybody acknowledges (common
ground).
Test, commit and build early and often.
Document as much as possible. Documentation avoids
issue rebounding.

Luís Soares Teaming Up for Software Development



Links.

Links
Trac: http://trac.edgewall.org
Hudson: https://hudson.dev.java.net/
Maven: http://maven.apache.org/
Bazaar: http://bazaar-vcs.org/
Google: http://www.google.com ;)

Luís Soares Teaming Up for Software Development


	Introduction
	Agenda

	Best Practices
	Dependency Management and Build Frameworks
	Tracking Changes
	Tracking Issues
	Software Quality Control

	A walk in the lab.
	Final Remarks.
	Links.

