
Comput Syst Sci & Eng (2013) 1: 73–83
© 2013 CRL Publishing Ltd

International Journal of

Computer Systems
Science & Engineering

Towards an accurate evaluation of
deduplicated storage systems

João Paulo, Pedro Reis, José Pereira and António Sousa

High-Assurance Software Lab (HASLab), INESC TEC and University of Minho
E-mail: {jtpaulo, jop, als}@di.uminho.pt, pedro.reiz@gmail.com

Deduplication has proven to be a valuable technique for eliminating duplicate data in backup and archival systems and is now being applied to new storage
environments with distinct requirements and performance trade-offs. Namely, deduplication system are now targeting large-scale cloud computing storage
infrastructures holding unprecedented data volumes with a significant share of duplicate content.
It is however hard to assess the usefulness of deduplication in particular settings and what techniques provide the best results. In fact, existing disk I/O
benchmarks follow simplistic approaches for generating data content leading to unrealistic amounts of duplicates that do not evaluate deduplication systems
accurately. Moreover, deduplication systems are now targeting heterogeneous storage environments, with specific duplication ratios, that benchmarks must
also simulate.
We address these issues with DEDISbench, a novel micro-benchmark for evaluating disk I/O performance of block based deduplication systems. As the
main contribution, DEDISbench generates content by following realistic duplicate content distributions extracted from real datasets. Then, as a second
contribution, we analyze and extract the duplicates found on three real storage systems, proving that DEDISbench can easily simulate several workloads.
The usefulness of DEDISbench is shown by comparing it with Bonnie++ and IOzone open-source disk I/O micro-benchmarks on assessing two open-source
deduplication systems, Opendedup and Lessfs, using Ext4 as a baseline. Our results lead to novel insight on the performance of these file systems.

Keywords: Deduplication, Storage, Benchmark, Cloud Computing.

1. INTRODUCTION

Deduplication is now accepted as an effective technique for
eliminating duplicate data in backup and archival storage sys-
tems [17] and storage appliances [20], allowing not only to re-
duce the costs of storage infrastructures but also to have a positive
performance impact throughout the storage management stack,
namely, in cache efficiency and network bandwidth consump-
tion [13, 12, 10]. Moreover, a new trend where deduplication
is applied to large-scale cloud computing large-scale infrastruc-
tures is emerging. In fact, recent studies show that up to 80% of
space can be reclaimed for virtual machines with general pur-
pose data [7, 4] and up to 95% for system images in a typical
cloud provider [8].

Deduplication in cloud computing primary storage infrastruc-
tures raises new challenges for I/O performance and data con-
sistency that are not addressed in backup deduplication. Some
cloud applications will access and modify stored data, which

we refer as active data, in a frequent basis and with strict disk
I/O latency requirements. In contrast, backup data is immutable
and consequently, shared data will never be modified, not need-
ing copy-on-write mechanisms to ensure that data is not rewrit-
ten while being shared by several entities, which would lead to
data corruption. However, copy-on-write mechanisms impair
the performance of disk I/O operations by including additional
computation overhead. Yet another challenge arises when dedu-
plication is deployed on a decentralized infrastructure and per-
formed across remote nodes, requiring distributed metadata for
indexing the stored content and finding duplicates. Most systems
perform in-band, also know as in-line, deduplication where disk
I/O write requests to the storage are intercepted and shared be-
fore actually being stored. This way, only non-duplicate data
is actually stored, sparing storage space but including metadata
look up operations inside the critical I/O path, thus increasing
I/O latency.

vol 29 no 1 November 2013 73

TOWARDS AN ACCURATE EVALUATION OF DEDUPLICATED STORAGE SYSTEMS

Having in mind these performance challenges and the recent
sudden growth of work in this area, it is necessary to have proper
benchmarking tools, with realistic workloads, for evaluating disk
I/O performance of deduplicated storage systems. In fact, pre-
vious work analyzed 120 datasets used in deduplication studies
and concluded that these datasets cannot be used for comparing
distinct deduplication systems [18]. Most disk I/O benchmarks
do not use a realistic distribution for generating data patterns
and, in most cases, the patterns written either have the same
content, for each write operations, or have random patterns with
no duplicates at all [5, 9, 3]. If the same content is written for
each operation, the deduplication engine will be overloaded with
aliasing operations, which will affect the overall performance.
Moreover, if this content is rewritten frequently, the amount of
copy-on-write operations will increase considerably the I/O op-
erations latency. On the other hand, writing always random
content will generate few duplicates and the deduplication sys-
tems will be evaluated under a minimal load. Note that generat-
ing an unrealistic content workload will not only affect the disk
I/O performance but also the space savings, sharing throughput
and resource usage of the deduplication system [18]. Finally,
deduplication is applied to storage environments with distinct
distributions of duplicates that can also impact the evaluation
accuracy. For instance, distinct duplicate content distributions
will have an impact in the reference management and copy-on-
write operations that, as explained previously, do not affect sig-
nificantly the performance of archival/backup deduplication but
will affect the performance of primary storage deduplication.
This way, the workloads must simulate accurately the duplicate
content distributions at the storage environment being targeted.

Some benchmarks address the duplicates generation issue
by defining a percentage of duplicate content over the written
records [14] or the entropy of generated content [2]. However,
these methods are only able to generate simplistic distributions
that are not as realistic as desired, or present still preliminary
work where several details and proper implementation and eval-
uation are still missing [18].

We present DEDISbench, a synthetic disk I/O micro-
benchmark suited for block based deduplication systems that
introduces the following contributions:

• Generation of realistic content distributions, specified as
an input file, that can be extracted from real datasets with
DEDISgen extraction utility.

• Introduction of an hotspot random distribution, based on
TPC-C NURand function, that generates access hotspots
for disk I/O operations [19, 16].

• I/O operations, for each test, can be performed at a stress
load, i.e. the maximum load handled by the test machine,
or at a nominal load, i.e. the throughput of I/O operations
is limited to a certain threadshold [16].

Note that DEDISbench simulates low-level I/O operations
and does not focus on generating realistic directory trees and
files like other benchmarks [6, 2, 18, 3, 9]. Nevertheless, such
benchmarks are also referred along this paper and compared
with DEDISbench in terms of content generation and accesses
patterns. DEDISbench is evaluated and compared directly with
Bonnie++ and IOzone, the two open-source micro-benchmarks

that most resemble DEDISbench in terms of the suite and aim
of disk I/O tests.

Our previous work on DEDISbench [16] is extended by con-
sidering duplicate content distributions from three storage envi-
ronments with distinct access patterns and requirements, namely:

• An Archival storage where most files have a write-once
policy, with non-significant updates, but with sporadic data
deletion.

• A Personal Files storage where some files are updated and
deleted frequently and the I/O requests latency is expected
to be lower than the one found in archival storages.

• A High Performance storage where most files are updated
and deleted frequently and I/O latency is expected to be as
minimal as possible.

This study shows that each storage environment has specific
requirements and duplicate content distributions. These differ-
ences must be simulated accurately when evaluating dedupli-
cation systems aiming at distinct storages. Moreover, we also
show that extending DEDISbench with new workloads is simple
and only requires having access to the real dataset.

Section 2 describes DEDISbench design, implementation and
features. Section 3 presents the duplicate content distributions
found for three real storage environments and extends DEDIS-
bench workloads. Section 4 compares the content distributions
generated by DEDISbench, Bonnie++ and IOzone. Addition-
ally, Opendedup [15] and LessFS [11] deduplication systems are
evaluated with these three benchmarks and their performance is
compared with Ext4, a file system without deduplication. Sec-
tion 5 introduces relevant work and the main differences from
DEDISbench while Section 6 concludes the paper and points
DEDISbench main contributions.

2. DEDISBENCH

This section starts by presenting a global overview of DEDIS-
bench design and implementation and then, the generation of
realistic content and access pattern distributions are described in
more detail.

2.1 Basic Design and Features

The basic design and features of DEDISbench resemble the ones
found in Bonnie++ [5] and IOzone [14] that are two open-source
synthetic micro-benchmarks widely used to evaluate disk I/O
performance. DEDISbench is implemented in C and allows per-
forming either read or write block disk I/O tests, where the block
size is defined by the user. I/O operations can be executed con-
currently by several processes with independent files, being the
number of processes and the size of process files pre-defined by
the users. Moreover, the benchmark can be configured to stop
the evaluation when a certain amount of data has been written
or when a pre-defined period of time has elapsed, which is not
common in most I/O benchmarks. Yet another novel feature of
DEDISbench is the possibility of performing I/O operations with
different load intensities. In addition to a stress load where the

74 computer systems science & engineering

J. PAULO ET AL

I/O request
launcher

1. Get request
offsetAccess

pattern
generator

Content
Generator

2. Get request
content

3. Perform I/O
operation

Figure 1 Overview of I/O request generation.

benchmark issues I/O operations as fast as possible to stress the
system, DEDISbench supports performing the operations at a
nominal load, specified by the user, thus evaluating the system
with a stable load. Few I/O benchmarks support both features,
as stated in Section 5.

Figure 1 depicts an overview of DEDISbench architecture.
For each process, an independent I/O request launcher module
launches either read or write I/O block operations, at nominal or
peak rates, until the termination condition is reached. For each
I/O operation, this module must contact the access pattern gener-
ator for obtaining the disk offset for the I/O operation (1) that will
depend on the type of access pattern chosen by the user and can
be sequential, random uniform or random with hotspots. Next,
the I/O request launcher module contacts the content generator
module for obtaining an identifier for the content to generate
(2). Since DEDISbench is aimed at block-based deduplication,
this identifier will then be appended as an unique pattern to the
block’s content, ensuring that blocks with different identifiers
will not have the same content. The generated identifiers will
follow the input file provided for DEDISbench with the infor-
mation about duplicate content distribution. Note that this step
is only necessary for write I/O requests because read requests
do not generate any content to be written. Finally, the operation
will be sent to the storage (3) and the metrics regarding opera-
tions throughput and latency will be monitored in the I/O request
launcher module. Both content and access patterns generation
are further detailed next.

2.2 I/O Accesses Distribution

DEDISbench can generate random uniform and sequential disk
access patterns, as in IOzone and Bonnie++, and introduces a
novel pattern based on TPC-C NURand function that simulates
access hotspots, where few blocks are accessed frequently while
the majority of blocks are accessed sporadically. This allows
achieving a more realistic pattern, for most applications, where
random disk arm movement is tested while leveraging the advan-
tages of caching mechanisms, thus allowing to uncover distinct
performance issues [16].

2.3 Duplicate Content Distribution

DEDISbench main contribution is the ability to process, as input,
a file that specifies a distribution of duplicate content, which can
be extracted from a real dataset, and using this information for
generating a synthetic workload that follows such distribution.
As depicted in Figure 2 the input file states the number of blocks

Table 1 Duplicates found at the Archival, Personal Files and High Performance
Storages.

Archival Personal
Files

High
Performance

Total space (GB) 486 113 1528

% Blocks w/ duplicates 90 76 69

% Duplicate blocks
distinct 3 6 6

copies 7 18 25

for a certain amount of duplicates. In this example there are
5000 blocks with 0 duplicates, 500 blocks with 1 duplicate, 20
blocks with 5 duplicates and 2 blocks with 30 duplicates. This
file can be populated by the users or can be generated automati-
cally with DEDISgen, an analysis tool used for processing a real
dataset and extracting from it the duplicate content distribution,
as we detail in Section 3. DEDISbench then uses the input file
for generating a cumulative distribution with the probability of
choosing a certain block identifier, where two blocks with the
same identifier are duplicates. Then with the aid of a random
generator, a cumulative function is used for calculating, for each
I/O operation, an identifier and consequently the content to be
written.

3. EXTENDING DEDISBENCH DUPLI-
CATE CONTENT DISTRIBUTIONS

There is extensive work focusing on the duplicates found at real
storage systems [7, 4, 8]. However, the information provided in
these studies does not present the necessary details in order to
generate the input content distributions used by DEDISbench.
This section details how DEDISbench can be extended with ad-
ditional duplicate content distributions and presents the distri-
butions found for three distinct real storage systems that are
available in DEDISbench.

DEDISgen is an open-source utility for analyzing and ex-
tracting duplicate content distributions from real storage systems
and generating suitable input distributions for DEDISbench [16].
Next, we analyze the distributions for three distinct storage en-
vironments extracted with DEDISgen for a block size of 4 KB.
These three distributions have distinct access patterns and per-
formance requirements that, as explained previously, limit the
deduplication approach to be used.

3.1 Archival Storage

The first dataset analyzed has mainly archival and some backup
data from the members of our research group. Most data is
accessed sporadically and the number of updates on stored data
is extremely low, thus not significant. However, data can be
deleted which is not assumed in some archival systems. This
way, this dataset’s requirements are similar to the ones found in
traditional archival/backup deduplication systems where write-
once data is assumed and I/O throughput is leveraged over I/O
latency [17].

As depicted in Table 1, the dataset has approximately 486 GB,
90% of the blocks do not have any duplicate, 3% of the blocks

vol 29 no 1 November 2013 75

TOWARDS AN ACCURATE EVALUATION OF DEDUPLICATED STORAGE SYSTEMS

0 5000
1 500
5 20
30 2
...

Input File

DEDISgen

2. generate
input file

1. analyze
data set

3. generate
cumulative
distribution

DEDISbench

Figure 2 Generating and processing input content distribution file in DEDISbench.

have duplicates with distinct content and 7% of the blocks are
copies that can be eliminated with deduplication. This storage
has a small percentage of duplicate content, when compared
to some of the literature [7, 8], because duplicated files at this
storage are as reduced as possible due to space requirements.

3.2 Personal Files Storage

The second dataset has personal files from our research group and
has distinct requirements from the archival dataset. Data is ac-
cessed frequently and some is updated and deleted sporadically,
so it cannot be considered as write-once. Since the requirements
of this dataset change, the deduplication systems targeting this
storage type are also different from the ones considered in the last
section [15, 11]. Namely, deduplication systems are expected to
handle reference management more efficiently and protect up-
dates on shared data with copy-on-write mechanisms that can
have a significant impact in I/O latency, which is expected to be
lower than the one tolerated in archival and backup storages.

As shown in Table 1, the dataset has approximately 113 GB
and has a higher percentage of copies than the one found at the
Archival storage, namely, 18%. Moreover, 76% of the blocks
do not have any duplicate while 6% are duplicated blocks with
distinct content. This storage has significantly more duplicates
than theArchival storage because several personal files are dupli-
cated. For example, project repositories are stored at this storage
and in most cases each researcher has its own copy, generating
several duplicates.

3.3 High Performance Storage

The last dataset analyzed is used as the primary storage for our
group research projects, storing data from simulations and real
applications. Data is updated frequently, thus generating more
copy-on-write operations, that raise the complexity of reference
management and the latency in I/O operations. However, I/O
latency is expected to be as minimal as possible so, the dedu-
plication systems suitable for the two storage types described
previously are usually not suited for primary storages, leverag-
ing the emergence of novel deduplication approaches.

As shown in Table 1, the dataset has approximately 1.5 TB,
having the large size of the three storages analyzed and also the
larger percentage of copies, namely, 25%. Additionally, 69%
of the scanned blocks do not have any duplicate and 6% have
duplicates with distinct content. This storage has the higher per-
centage of duplicates, which can be explained by the amount of
duplicated runs from simulations and real systems benchmarks,

necessary for the group’s research work, that are kept persistent
at this storage. Also some of these tests are not content-aware
and, this way, simulate I/O storage content by writing only dupli-
cate content, which also leverages the percentage of redundant
copies found.

3.4 Discussion

Despite the distinct percentages of duplicates found for each
storage environments, that will affect the number of duplicates
generated and, consequently, the evaluation of deduplication sys-
tems, it is also important to look at the ratio of duplicates per
block. In a storage scenario where blocks are updated frequently,
having many blocks with one duplicate or having few blocks with
many duplicates will change the number of copy-on-write opera-
tions, reference management and garbage collection. This way,
it is important that the workload simulates not only the num-
ber of duplicates but also the duplication ratio found in storage
systems.

The differences in the duplication ratios for the three storages
are visible at Table 1. For example, both Personal Files and High
Performance storages have 6% of duplicated blocks with distinct
content but the percentage of duplicates (copies) is higher for the
High Performance storage that, consequently, has a higher ratio
of duplicates per block. In Figure 3, that shows the percentage of
distinct content blocks with a certain range of duplicate blocks,
these differences are even more noticeable. Note that the figure
omits blocks with more that 500 duplicates for legibility reasons.
In fact, all the storages have some blocks with more than 500
duplicates but the percentage is really small and not noticeable
in the figure. In detail, Personal Files storage has 102 blocks
with more than 500 duplicates, High Performance storage has
102 blocks with more than 500 duplicates and Archival storage
has 118 blocks with 50 to 100 duplicates, 120 blocks with 100
to 500 duplicates and 58 blocks with more than 500 duplicates.

Looking at the figure, the Archival storage has few blocks
with more than 100 duplicates while the Personal Files storage
has the higher percentage of blocks with many duplicates. On
the other hand, the High Performance storage has the higher
percentage of blocks with few duplicates, which probably will
increase copy-on-write operations and reference management
complexity as many blocks will be shared and then updated in
a frequent basis. This particular example helps understanding
why deduplication systems must be evaluated with workloads
that accurately simulate realistic content distributions.

To sum up, this study and comparison of duplicate content
distributions is important to understand the percentage of dupli-
cates and the ratio of duplicates per block for three storage en-

76 computer systems science & engineering

J. PAULO ET AL

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

[0] [1:5[[5:10[[10:50[[50:100[[100:500[

%
 U

n
iq

u
e
 B

lo
c
k
s

Duplicates

H.perf
P.Files

Archival

Figure 3 Distribution of duplicates ranges per distinct blocks for Archival, Per-
sonal Files and High Performance storages.

vironments with distinct access patterns and requirements. For
instance, the different duplication ratios identified in this study
can change the utilization patterns of reference management and
copy-on-write mechanisms that may impact significantly the I/O
latency overhead, which can pose as an unacceptable limitation
for primary storage systems but still be tolerated in archival sys-
tems. Moreover, as we will show next, distinct duplicate content
distributions will indeed affect the evaluation of deduplication
systems so, it is extremely important to choose the correct work-
load.

4. EVALUATION

This section compares DEDISbench with IOzone and Bonnie++,
which are the two micro-benchmarks with the closest design and
features.

Bonnie++ [5] is a standard I/O micro-benchmark that per-
forms several tests to evaluate disk I/O performance in the fol-
lowing order: Write tests assess the performance of single byte
writes, block writes and rewrites while read tests assess byte
and block reads, all with a sequential access distribution. Seek
tests perform random block reads and, in 10% of the operations,
block writes by following an uniform random distribution. The
size of blocks, the number of concurrent Bonnie++ processes
and the size of the file each process accesses are defined by the
user. All these tests are performed with a stress load and run
until an amount of data is written/read for each test. However,
it is not possible to specify the content of written blocks. Bon-
nie++ also tests the creation and deletion of files, which is not
contemplated in this evaluation because it is not supported by
IOzone or DEDISbench.

IOzone [14] is the I/O micro-benchmark that most resembles
DEDISbench and allows performing sequential and random uni-
form write and read tests. The block size, number of concurrent
processes and the size of the files of each process, are also de-
fined by the users. Tests are performed at a stress load and, for
each test, the user defines the amount of data to be written by
each process. Unlike in Bonnie++ it is possible to define full
random tests that perform either read or write random disk I/O

operations. Additionally, the percentage of duplicate inter-file
and intra-file content in each block can also be specified. How-
ever, as discussed in the next sections, this content generation
mechanism does not allow specifying a content distribution with
a realistic level of detail as in DEDISbench.

DEDISbench, IOzone and Bonnie++ have several features in
common but also differ in specific details, as shown in Table 2. In
DEDISbench, a cumulative function extracted from a real dataset
allows simulating not only the percentage of duplicate and non-
duplicate blocks but also the distribution of duplicates per unique
block. Such is not possible with the IOzone’s approach that only
allows defining the intra and inter-file duplication percentage or
in Bonnie++ where the content distribution cannot be specified
by the user. The content distributions generated by the three
benchmarks are evaluated and further discussed in Section 4.2.

The three benchmarks support sequential and random uniform
access tests. DEDISbench introduces a novel hotspot access pat-
tern where few blocks are accessed frequently while the majority
of blocks are accessed sporadically. I/O tests in DEDISbench
can be pre-defined to terminate when a specific amount of data
was written, as in IOzone and Bonnie++, or when a specific
amount of time has elapsed. Moreover, DEDISbench tests can
perform I/O operations with stress or nominal load intensities,
allowing to evaluate storage systems with stress or stable loads.
In Bonnie++, it is possible to perform block and byte I/O tests
while, in the other two benchmarks, tests are only performed at
the block granularity. Most of these details are also evaluated
and discussed in Section 4.3 as they influence the results of the
evaluation of deduplication systems.

4.1 Evaluation Scope and Setup

The experiments discussed in this section aim at validating two
distinct points: First, we want to show that DEDISbench sim-
ulates more accurately a real content distribution than IOzone
and Bonnie++. As a second goal, we want to show that this en-
hanced content generation mechanism along with the other novel
features of DEDISbench allow uncovering new issues in dedu-
plication systems, thus proving that such features are important
for an accurate evaluation.

All tests ran in a 3.1 GHz Dual-Core Intel Core Processor with
hyper-threading, 4GB of RAM and a local SATA disk with 7200
RPMs. Unless stated otherwise, for each benchmark test, the
amount of data read/written was 8GB distributed over 4 con-
current processes, each reading/writing 2GB in an independent
file.

The three benchmarks were configured in order to simulate
as accurately as possible the content distribution of the Per-
sonal Files dataset described in Section 3. Namely, since the
Personal Files dataset was analyzed with a block size of 4KB,
the block size chosen for DEDISbench and Bonnie++ was also
4KB. DEDISbench used the input distribution file generated by
DEDISgen to simulate the realistic distribution while, in Bon-
nie++, it is not possible to specify the content to be written.

On the other hand, for IOzone, the block size chosen was
16KB, thus defining that each block would have 25% of its data
(4KB) duplicated across distinct process files. With this con-
figuration and using 4 independent files, each block of 16KB

vol 29 no 1 November 2013 77

TOWARDS AN ACCURATE EVALUATION OF DEDUPLICATED STORAGE SYSTEMS

Table 2 Comparison of DEDISbench, IOzone and Bonnie++ features.

DEDISbench IOzone Bonnie++

Content Generation Cumulative function of a real
distribution

Intra and Inter-file duplica-
tion percentage.

Cannot be specified

Access Patterns Sequential, uniform random
and hotspot random

Sequential and uniform ran-
dom

Sequential and uniform
random

Termination Data written and time Data written Data written

Intensity Stress and nominal Stress Stress

Granularity Block Block Byte and block

has a distinct 4KB region with three duplicates, one for each
file, which resembles the average number of 2.76 duplicates per
block found at Personal Files workload. Globally, IOzone gen-
erates 18.5% of copies while the remaining 75% of the blocks do
not have any duplicate, which also resembles the values shown
at Table 1 for the Personal Files data. By choosing 16KB for
the block size, the duplicate blocks are generated with a size of
4KB as in the real dataset, which would not be possible if the
IOzone block size was defined as 4KB. Finally, even thus IOzone
allows defining intra and inter-file duplicates, which would also
allow to generate regions with many duplicates, this would lead
to increasing greatly the block size and the complexity of the
configuration to only be slightly closer to the distribution found
at the real dataset. However, even with these modification this
would only allow to simulate two or three distinct types of blocks
with a distinct proportion of duplicates while in DEDISbench it
is possible to simulate as many types as specified in the input
distribution file, thus increasing hugely the distribution detail.

Note that we have chosen the Personal Files dataset for eval-
uating the benchmark’s accuracy but we could have chosen any
one of the other two datasets described in the previous section.
As explained in Section 4.3, the evaluated deduplication sys-
tems, namely Opendedup [15] and Lessfs [11], were developed
for storage workloads with requirements resembling our Per-
sonal Files one. This way, we choose to use this real distribution
as a baseline for the complete evaluation procedure in order to
increase the paper’s uniformity and clarity. However, the results
and consequent conclusions of Section 4.2 would have been sim-
ilar if one of the other distributions was chosen and the bench-
marks were configured to simulate them. Finally, thorough this
section, we also refer to the Personal Files dataset as the real
dataset.

4.2 Duplicate Content Distribution

In order to compare DEDISbench, IOzone and Bonnie++ content
generation mechanisms we have used DEDISgen for analyzing
the data generated by each benchmark for a sequential disk I/O
write test. We choose the sequential I/O test over a random test
because there are no block rewrites, enabling the extraction of
precise information about all the written blocks and their con-
tents. Note that, as explained previously, these benchmarks were
all configured to simulate as accurately as possible the content
of the Personal Files workload.

Figure 4 presents the percentage of unique blocks with a cer-
tain range of duplicates (i.e. equal to 0, between 1 and 5, 5 and
10, 10 and 50 and so on) for Bonnie++, IOzone and DEDIS-

bench generated content and for the Personal Files dataset. All
the distinct blocks generated by Bonnie++ have between 1 and 5
duplicates, in fact, each unique block has precisely 3 duplicates
because every file is written with the exact same content, mean-
ing that, all blocks in the same file are distinct but are duplicated
among the other files. Consequently, as shown in Table 3, with
Bonnie++ 75% of the written space can be deduplicated which
may introduce a significant load in the deduplication mecha-
nisms. Note that, Figure 4 shows the number of duplicates gen-
erated for each unique block written by the benchmarks while
Table 3 shows the percentage of blocks without any duplicate,
blocks with distinct duplicates and duplicate blocks for all the
blocks written by the benchmarks, thus explaining why the per-
centages differ.

The results for IOzone in Figure 4 show that most unique
blocks do not have any duplicate, while the remaining blocks
have mainly between 1 and 5 duplicates and a very small per-
centage has between 5 and 10. In fact, the remaining distinct
blocks should have 3 duplicates each, which happens for almost
all the blocks with the exception of 216 blocks that have only
1 duplicate and 3 blocks that have 7 duplicates. If the content
of unique blocks is generated randomly, it is possible to have
these collisions, which are not significant for the 8GB written by
the I/O tests. In Table 3, IOzone percentage of duplicates and
unique blocks is closer to the real distribution percentages.

The results of DEDISbench, in Figure 4, show that the number
of unique blocks and their duplicates is distributed over several
regions, resembling most the real distribution. DEDISbench
generates most blocks with few duplicates and a small percent-
age of blocks with many duplicates. In fact, we omitted one value
from the figure in the far end of the distribution tail, for legibility
reasons, where a single block has 15665 duplicates. As depicted
in this figure, DEDISbench distribution is closer to a real dataset
which may impact the performance of deduplication systems.
For example, having many blocks with few duplicates will in-
crease the number of shared blocks that, after being rewritten,
must be collected by the garbage collection algorithm. On the
other hand, mixing blocks with different number of duplicates
will also affect the size of metadata structures and the work per-
formed by the deduplication engine. However, when looking at
Table 3 the results are slightly more distant from the real values
when compared to IOzone results. Since the real data set has
approximately 100GB and the benchmark is only writing 8GB,
even if the cumulative distribution generated by DEDISbench
has a high probability for writing some blocks several times,
which would generate a large amount of duplicates per block,
these blocks are being written fewer times than expected. Fig-
ure 5 and Table 4 compare the results of running DEDISbench
sequential write tests for 16 and 32GB (divided by 4 files) and

78 computer systems science & engineering

J. PAULO ET AL

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

[0] [1:5[[5:10[[10:50[[50:100[[100:500[

%
 U

ni
qu

e
B

lo
ck

s

Duplicates

Bonnie++
IOzone

DEDISbench
Real

Figure 4 Distribution of duplicates ranges per distinct blocks for Bonnie++,
IOzone, DEDISbench and the Real dataset.

Table 3 Duplicates found in Bonnie++, IOzone,DEDISbench and the real
dataset.

Bonnie++ IOzone DEDISbench Real

% Blocks w/ duplicates 0 75 90 76

% Duplicate blocks
distinct 25 6 3 6

copies 75 19 7 18

shows that when the amount of written data is closest to the
amount of data in the real dataset, the distribution generated by
DEDISbench also becomes closer to the real one.

These results show that both Bonnie++ and IOzone do not sim-
ulate accurately the distribution of duplicates per unique blocks.
On the other hand, DEDISbench design allows to overcome this
limitation and simulates more accurately a real storage work-
load, thus proving our first evaluation goal. The lack of detail in
Bonnie++ and IOzone can influence the load in the deduplication
and garbage collection mechanisms of the deduplication system.
For instance, a block shared by two entities or by one hundred
determines the timing when garbage collection is needed, how
often the copy-on-write mechanism must be used and the amount
of information in metadata structures for sharing identical con-
tent. In Bonnie++ sharing an excessive amount of blocks will
overload the deduplication engines while in IOzone, having all
duplicated blocks with 3 or 4 distinct duplicates may also not be
realistic and influence the evaluation. Such issues are assessed
in the next section.

4.3 I/O Performance Evaluation

After comparing the content generation accuracy for the three
benchmarks, we assessed how the distinct features of each
benchmark would affect the evaluation of real deduplication sys-
tems. For this purpose, we chose to evaluate two open-source
deduplication systems:

LessFS [11] is an open source single-host deduplication file
system designed mainly for backup purposes but that can also
be used for storing VM images and active data with moderate
performance. LessFS uses FUSE for implementing file system
semantics and only supports in-line deduplication. Data is stored
as chunks with a fixed size of 4KB.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

[0] [1:5[[5:10[[10:50[[50:100[[100:500[

%
 U

ni
qu

e
B

lo
ck

s

Duplicates

DEDISbench
DEDISbench16
DEDISbench32

OriginalDist

Figure 5 Distribution of duplicates ranges per distinct blocks for DEDISbench
tests of 8,16 and 32 GB and for the Real dataset.

Table 4 Duplicates found in DEDISbench datasets with 8,16 and 32 GB and in
the Real dataset.

DEDISbench
8

DEDISbench
16

DEDISbench
32

Real

% Blocks w/
duplicates

90 87 83 76

% Duplicate
blocks

distinct 3 4 5 6

copies 7 8 12 18

Opendedup [15] is an open-source deduplication file system
that supports single and multi-host deduplication. Deduplication
can be performed in-line or in batch (off-line) mode, where data
is shared in an asynchronous fashion only after being stored.
Opendedup file system is based on FUSE to export common file
system primitives and uses Java for the deduplication engine.
Data is stored as chunks and the block size can be parametrizable.

These two systems were chosen because they are mature open-
source projects that, although not designed for high performance
storages, export file systems supporting active data modification.
In most archival/backup deduplication systems, write-once data
is assumed and it is not possible testing the impact of copy-
on-write and garbage collection mechanisms. Looking at the
target storage workloads of these two systems and at the storage
datasets discussed in Section 3, the Personal Files workload is the
storage environment that fits best with the assumptions of these
two deduplication systems. In fact, this was the main motivation
for choosing the content distribution of this specific real dataset
as the reference distribution simulated by the benchmarks in our
experiments.

The impact of having distinct I/O benchmarks, with specific
designs, evaluating deduplication systems cannot be measured
by comparing directly the results of each benchmark. Firstly,
each benchmark has distinct implementations for similar tests
and for the calculation of I/O throughput and latency values as
well as CPU and RAM usage. Moreover, each benchmark per-
forms some tests that are not present in the others, for example,
only Bonnie++ has single byte tests and only DEDISbench uses
an hotspot access distribution. As another example, saying that
Opendedup achieves higher throughput in Bonnie++’s sequen-
tial block write test than in IOzone and DEDISbench’s sequential
block tests may not be significant because each benchmark has
distinct implementations.

vol 29 no 1 November 2013 79

TOWARDS AN ACCURATE EVALUATION OF DEDUPLICATED STORAGE SYSTEMS

Table 5 Evaluation of Ext4, LessFS and Opendedup with Bonnie++.

Ext4 Lessfs Opendedup

Sequential byte write
(KB/s)

1100 76 56

Sequential block write
(KB/s)

72035 13860 155496

Sequential block rewrite
(KB/s)

17319 1016 62744

Sequential byte read
(KB/s)

3029 1262 72

Sequential block read
(KB/s)

73952 60064 144614

Urandom seek (KB/s) 170.9 127.1 115.8

This way, we choose to evaluate each deduplication system
as it would be evaluated in a traditional scenario. Namely, the
two deduplication systems were compared against Ext4, a file
system without deduplication. By running the three benchmarks
for Opendedup, LessFS and Ext4 we can observe the overhead of
the deduplication systems over a traditional file system that does
not perform deduplication. This way, it is possible to compare
the amount of overhead introduced by the deduplication systems
in Bonnie++, IOzone and DEDISbench tests and compare these
overhead values. For instance, if the single byte write tests of
Bonnie++ introduce higher I/O latency overhead than the se-
quential block write tests of all benchmarks, we could conclude
that writing single bytes is inefficient and that this specific test
uncovers a problem that is not evaluated by the other tests. On
the other hand, if sequential block writes in Bonnie++ have less
I/O latency overhead than in IOzone or in DEDISbench block
write tests, we can compare these values and justify this differ-
ence because Bonnie++ writes a higher percentage of duplicates
than the other two benchmarks. To sum up, by comparing the
overheads of the deduplication systems and Ext4 it is possible
to extract meaningful information even if the implementation of
each benchmark is different. Note that this evaluation is not in-
tended for assessing which benchmark consumes less resources
or has higher throughput but to check how each deduplication
system is evaluated by these benchmarks and which issues are
uncovered.

All the file systems were mounted in the same partition, with
a size of 20GB, that was formatted before running each bench-
mark. Also, all the deduplication file systems were configured to
have a block size of 4KB and perform deduplication in-line. By
performing in-line deduplication, data is shared immediately and
the consequent overheads are also visible immediately, which
would not be possible in batch mode deduplication. Finally,
in Bonnie++ the tests were performed in the following order:
single-byte write, block write and block rewrite in sequential
mode, single-byte read and block read in sequential mode and,
finally, the random seek test. For IOzone and DEDISbench we
choose the tests order to be as similar as possible to Bonnie++.
In IOzone the order was: Block write, block rewrite, block read
and block reread in sequential mode and block read and block
reread in random uniform mode. For DEDISbench the order was
exactly the same as in IOzone but we introduced two more tests
before ending the benchmark that were the block read and block
write with the NURand distribution.

Table 5 shows the results of running Bonnie++ on Ext4,
LessFS and Opendedup. By comparing the deduplication sys-

Table 6 CPU and RAM consumption of LessFS and Opendedup for Bonnie++,
IOzone and DEDISbench.

LessFS Opendedup

Bonnie++
CPU 22 % 163 %
RAM 2.2 GB 1.8 GB

IOzone
CPU 9 % 25 %
RAM 1.25 GB 2.1 GB

DEDISbench
CPU 15.7 19.5 %
RAM 2.2 GB 1.9 GB

Table 7 Evaluation of Ext4, LessFS and Opendedup with IOzone.

Ext4 Lessfs Opendedup

Sequential block write (KB/s) 74463 5525,24 19760,8

Sequential block rewrite
(KB/s)

74356,88 373,28 29924,84

Sequential block read (KB/s) 67159,36 7777,48 10464,4

Sequential block reread
(KB/s)

67522,48 11495,48 10403,72

Urandom block read (KB/s) 2086,4 1304,08 1766,24

Urandom block write (KB/s) 2564,76 162,4 1608,04

tems with Ext4 it is possible to conclude that writing sequentially
one byte at a time is inefficient because, for each written byte, a
block of 4KB will be modified and will be shared by the dedupli-
cation system, thus forcing the deduplication system to process
a single block 4096 times. This is also true for sequential byte
reads where, in each operation, it must be made an access to the
metadata that tracks the stored blocks for retrieving a single byte.
In this last test, the overhead introduced by Opendedup, when
compared to LessFS overhead, is considerably higher and can be
caused by retrieving the whole block to memory in each byte read
operation instead of taking advantage of a caching mechanism.
In sequential block write and rewrite Opendedup outperforms
Ext4 by taking advantage of Bonnie++ writing the same con-
tent in all tests. Data written in sequential byte tests was already
shared and Opendedup algorithm only requires consulting the in-
memory metadata for finding duplicate content and sharing it,
thus avoiding the need of actually writing the new blocks to disk.
On the other hand, LessFS implementation does not seem to take
advantage of such scenario. Opendedup also outperforms Ext4
in sequential block reads probably with a cache mechanism, effi-
cient only at the block granularity. Finally, in random seek tests
both deduplication systems present worse results that Ext4, with
LessFS slightly outperforming Opendedup. RAM and CPU us-
ages while Bonnie++ was running are depicted in Table 6. Both
Opendedup and LessFS consume a significant amount of RAM,
meaning that most metadata is loaded in memory and explaining,
for example, the performance boosts of Opendedup in sequential
block read and write tests. Moreover, the increase in CPU con-
sumption with Opendedup can be a consequence of Bonnie++
writing a high percentage of duplicate content, thus generating
an unrealistic amount of duplicate data to be processed.

Table 7 shows the results of running IOzone on Ext4, LessFS
and Opendedup. Unlike Bonnie++, this benchmark does not
write always the same content explaining why Opendedup does
not outperforms Ext4 in block rewrite operations. Although
some of the data was shared already, the content written is not
always the same and most requests are still written to disk. With
IOzone, Opendedup outperforms LessFS in almost all tests with

80 computer systems science & engineering

J. PAULO ET AL

Table 8 Evaluation of Ext4, LessFS and Opendedup with DEDISbench.

Ext4 Lessfs Opendedup

Sequential block write (KB/s) 86916.82 5025.352 77508.424

Sequential block rewrite
(KB/s)

76905.028 658.324 18852.732

Sequential block read (KB/s) 78648.964 7527.196 18591.672

Sequential block reread
(KB/s)

78620.46 11788.792 20404.88

Urandom block read (KB/s) 791.356 2055.228 511.62

Urandom block write (KB/s) 1416.016 123,232 n.a.

NURandom block read
(KB/s)

2287.208 1829.704 1350,304

NURandom block write
(KB/s)

1246.336 151.556 n.a.

the exception of block reread test where LessFS is slightly bet-
ter. LessFS decrease in performance is more visible in sequential
and random write tests and mainly in rewrite tests. In Table 6,
the RAM and CPU usages drop significantly which can be a
consequence of writing less duplicate content. The RAM usage
in Opendedup is an exception and the value is higher than in
Bonnie++ tests.

Table 8 shows the results of running DEDISbench on Ext4,
LessFS and Opendedup. As explained previously, IOzone gener-
ates all duplicated blocks with exactly 3 duplicates while DEDIS-
bench uses a realistic distribution where most blocks have few
duplicates but some blocks have a large number of copies, which
will help explaining the next results. In sequential tests both
Opendedup and LessFS are outperformed by Ext4, as in IOzone
evaluation. However, the results of Opendedup for the sequen-
tial write test show considerably less overhead when compared
to the same IOzone test, which can be a consequence of DEDIS-
bench generating some blocks with a large amount of duplicates
that will require writing only one copy to the storage, thus en-
hancing the performance of Opendedup. On the other hand, in
the sequential rewrite tests, Opendedup performance decreases
since DEDISbench generates many blocks with few duplicates
that will then be rewritten and will require garbage collection,
thus increasing the overhead.

The most interesting results appear in the random I/O tests.
Firstly, LessFS outperforms Ext4 in uniform random block read
test, which is an harsh test for the disk arm movement, point-
ing one of the advantages of using deduplication. If two blocks
stored in distant disk positions are shared, the shared block will
then point to the same disk offset and a disk arm movement will
be spared. In IOzone there are few duplicates per block and this
operations does not occur so often but, in DEDISbench some
blocks have a large number of duplicates which can reduce sig-
nificantly the disk arm movement and consequently improve per-
formance. Even in Opendedup where this improvement is less
visible, the overhead for random uniform read tests is lower than
the one for sequential read tests. With the NURand hotspot dis-
tribution the performance of read operations in Ext4 is leveraged
because caching mechanisms can be used more efficiently, thus
the performance LessFS and Opendedup are reduced but, never-
theless, achieve better performance than in sequential tests. The
CPU and RAM consumptions, shown in Table 6, for LessFS and
Opendedup are similar to the ones obtained with IOzone, with
a slight reduction in Opendedup and increase in LessFS. These

Table 9 Evaluation of Opendedup with DEDISbench and a modified version of
DEDISbench that generates the same content for each written block.

DEDISbench
Original

DEDISbench
Modified

Sequential block write (KB/s) 77508.424 247428,092

Sequential block rewrite
(KB/s)

18852.732 253817,508

Sequential block read (KB/s) 18591.672 412694,064

Sequential block reread
(KB/s)

20404.88 418169,436

Urandom block read (KB/s) 511.62 106696,336

Urandom block write (KB/s) n.a. 3638,368

NURandom block read
(KB/s)

1350,304 73385,616

NURandom block write
(KB/s)

n.a. 3288,78

variations can be explained by the design and implementation
of each deduplication system and how these process the distinct
generated datasets.

The other interesting results are visible in the uniform and NU-
Rand random write tests. The performance of LessFS when com-
pared to Ext4 decreases significantly while Opendedup system
blocks with a CPU usage of almost 400%, not being able to com-
plete these tests. Realistic content distribution in DEDISbench
uncovered a problem in Opendedup that could not be detected
with simplistic content distributions in IOzone and Bonnie++.
To further prove this point, Table 9 tests Opendedup with the
default DEDISbench and a modified version that writes always
the same content, in each I/O operation, and, as we can see by
the results, Opendedup completes successfully all the tests and
greatly increases the performance, even when compared to the
Ext4 results with the default DEDISbench version. However,
the drawback of processing a fully duplicate dataset is visible in
the CPU and RAM usage of Opendedup that increase to 272%
and 2.6 GB respectively, which can be a serious limitation for
deduplication in cloud commodity servers. Furthermore, these
results show that using a realistic content distribution is neces-
sary for a proper evaluation of deduplication systems and that
Opendedup is not thought for datasets with a higher percentage
of non-duplicated data.

This section states that using realistic content and accesses
distributions influences significantly the evaluation of dedupli-
cation systems. Moreover, generating a realistic content distri-
bution is necessary for finding performance issues and system
design fails, like the ones found in Opendedup, but also for find-
ing deduplication advantages, such as the boost in performance
of uniform random read tests in LessFS. Moreover, it is useful
having a benchmark that can simulate several content distribu-
tions ranging from fully duplicate to fully unique content and,
most importantly, that is able to generate a content distribution
where the number of duplicates per block is variable and follows
a realistic distribution. To our knowledge, this is only achievable
with DEDISbench.

5. RELATED WORK

Despite the extensive research on I/O benchmarking, to our
knowledge and as discussed in previous published work, I/O

vol 29 no 1 November 2013 81

TOWARDS AN ACCURATE EVALUATION OF DEDUPLICATED STORAGE SYSTEMS

benchmarks that allow defining content distributions are vaguely
addressed in the literature and are either limited to generating
simplistic distributions [14, 6] or are still preliminary work [18].

A lot like DEDISbench does, IOzone [14] and Bonnie++ [5]
test disk I/O performance by performing concurrent sequential
and random read and write operations in several files. Bon-
nie++ does not allow specifying the content generated for I/O
operations, in fact, it writes the same content in each disk I/O
test and for each file. On the other hand, IOzone allows spec-
ifying the percentage of duplicate data in each record (block).
It is possible to subdivide further this duplicate percentage and
detail the amount of this percentage that is found among other
records in the same file (intra-file), among records on distinct
files (inter-file) and in both intra and inter file. In other words,
these parameters allow defining the percentage of intra and inter-
file duplicate content, meaning that, it is possible to achieve some
control over the number of duplicates per record and have dif-
ferent regions of a record with a different number of duplicates
as in DEDISbench. However, achieving such distributions can
be complex and the level of detail achieved is not as realistic
as the one provided by DEDISbench. Both IOzone and Bon-
nie++ use either sequential or random uniform distributions for
the access pattern of I/O operations and are only able to perform
stress testing. In Bonnie++ and IOzone, tests are performed at a
peak/stress rate and random tests follow an uniform random dis-
tribution that balances equally the I/O operations per file region.
DEDISbench introduces an hotspot access pattern distribution
based on TPC-C NURand function and allows to perform I/O
operations at a nominal throughput, that may be more realistic
settings for most applications. To our knowledge, Bonnie++ and
IOzone are the closest synthetic micro-benchmarks to DEDIS-
bench in terms of design principles and evaluation parameters,
which is why we compare our benchmark directly with both in
Section 4.

Other work, with different assumptions from DEDISbench,
IOzone and Bonnie++, leverages the simulation of actual file sys-
tems by generating directory threes and depth, the amount of files
in each directory, distinct file sizes and multiple operations on
files and directories. Most of these benchmarks use probabilistic
distributions for building filesystem trees, choosing the opera-
tions to execute and the targets of each operation [3, 1, 9, 6, 18].
Fstress [3] presents several workloads with different distribu-
tions (e.g. peer-to-peer, mail and news servers) that run with
a pre-defined nominal load like in DEDISbench. Moreover,
Fstress also uses an hotspot probabilistic distribution for assign-
ing operations to distinct files. Postmark [9] is designed to eval-
uate the performance of creating, appending, reading and delet-
ing small files, simulating the characteristic workloads found in
mail, news and web-based commerce servers. Target files and
sizes are choosen by following an uniform distribution. Agrawal
et all [1] work uses distinct probability models for creating new
directories and files, for choosing the depth and number of files
in each directory and for choosing the size and the access pat-
terns to distinct files. However, none of these benchmarks allows
specifying the content to be written, using instead a random or
a constant pattern.

Filebench [6, 2] uses an entropy based approach for generating
data with distinct content, for each I/O operation, that allows con-
trolling the compression and duplication ratio of a dataset. Like
in IOzone, this approach allows simulating the amount of dupli-

cate data in a specific dataset but does not allow detailing further
the distribution as in DEDISbench. Furthermore, we could not
find the implementation details of this feature in the current ver-
sion of Filebench. Tarasov et al. [18] preliminary work presents
a framework for generating data content and metadata evolution
in a controllable way. Their algorithm builds a base image with
pre-defined directories and files and then uses a Markov model
to perform file-level changes and multi-dimensional statistics to
perform in-file changes that result in mutations of the base im-
age. Metadata and data changes are loaded from pre-computed
profiles, extracted from public and private data of different web
servers, e-mail servers and version control repositories. This
is still preliminary work and the generation and loading of the
duplicate content distribution are neither detailed nor evaluated.
Despite the different aims of DEDISbench and these filesystem
benchmarks, our content generation algorithm is still different
from the ones found in these systems and could be incorporated,
with some design and implementation modifications, in any of
these benchmarks.

To sum up, most I/O benchmarks do not support the genera-
tion of duplicate content writing either random or constant data
patterns. To our knowledge, IOzone, Filebench and Tarasov et
all [18] are the only I/O benchmarks supporting such feature but,
when compared with DEDISbench, these benchmarks use dif-
ferent algorithms for generating duplicate content that are lack-
ing design and implementation details or limiting the realism of
generated distributions.

6. CONCLUSION

This paper discusses the characterization of duplicate content in
storage systems and its impact in evaluating deduplication sys-
tems. This is achieved with DEDISbench, a synthetic disk I/O
micro-benchmark that processes metadata extracted from real
datasets for generating realistic content for I/O write operations.
Previous I/O benchmarks, either do not focus on distinct con-
tent generation or generate limited distributions that, in most
cases, do not simulate accurately real datasets. DEDISbench
allows performing I/O tests with stress and nominal intensities
and introduces an hotspot distribution, based on TPC-C NU-
Rand function, that allows testing random disk accesses while
maintaining cache efficiency.

In detail, the duplicate content distributions of three real
datasets, with distinct requirements and access patterns, are an-
alyzed with DEDISgen, a tool for analyzing real datasets and
extracting the duplicate content distributions used by DEDIS-
bench. This process is straightforward and allows having work-
loads that are suited for distinct storage environments.

The comparison of DEDISbench with IOzone and Bonnie++
shows that DEDISbench simulates more accurately a real content
distribution, allowing to specify in detail the proportion of du-
plicates per unique block. This increased accuracy was key for
finding new performance advantages and drawbacks and also
relevant issues in two deduplication file systems, LessFS and
Opendedup, evaluated with the three benchmarks and compared
to Ext4, a file system without deduplication. In fact, DEDIS-
bench realistic content distribution uncovered an important lim-
itation in Opendedup implementation.

82 computer systems science & engineering

J. PAULO ET AL

7. AVAILABILITY

DEDISbench and DEDISgen documentation, source code and
debian packages are available at: http://www.holeycow.
org/Home/dedisbench.

Acknowledgments

This work is funded by ERDF - European Regional Develop-
ment Fund through the COMPETE Programme (operational pro-
gramme for competitiveness) and by National Funds through
the FCT - Fundação para a Ciência e a Tecnologia (Portuguese
Foundation for Science and Technology) within project RED
FCOMP-01-0124-FEDER-010156 and FCT by Ph.D scholar-
ship SFRH-BD-71372-2010.

REFERENCES

1. Agrawal, N., Arpaci-Dusseau, A.C., Arpaci-Dusseau, R.H.: Gen-
erating realistic impressions for file-system benchmarking. In:
Conference on File and Storage Technologies (2009)

2. Al-Rfou, R., Patwardhan, N., Bhagavatula, P.: Deduplication and
compression benchmarking in filebench. Tech. rep. (2010)

3. Anderson, D.: Fstress: A flexible network file service benchmark.
Tech. rep. (2002)

4. Clements, A.T., Ahmad, I., Vilayannur, M., Li, J.: Decentralized
deduplication in san cluster file systems. In: USENIX Annual
Technical Conference (2009)

5. Coker, R.: Bonnie++ web page. http://www.coker.com.
au/bonnie++/, may 2012

6. Filebench: Filebench web page. http://filebench.
sourceforge.net, may 2012

7. Ganger, G.R., Wilkes, J.: A study of practical deduplication. In:
Conference on File and Storage Technologies (2011)

8. White paper - complete storage and data protection architecture for
vmware vsphere. Tech. rep. (2011), http://www.ea-data.
com/HP_StoreOnce.pdf

9. Katcher, J.: Postmark: a new file system benchmark. Tech. rep.
(1997)

10. Koller, R., Rangaswami, R.: I/o deduplication: utilizing content
similarity to improve i/o performance. In: Conference on File and
Storage Technologies (2010)

11. Lessfs: Lessfs web page. http://www.lessfs.com/
wordpress/, may 2012

12. Muthitacharoen, A., Chen, B., Mazieres, D., Eres, D.M.: A low-
bandwidth network file system. In: Symposium on Operating Sys-
tems Principles (2001)

13. Nath, P., Kozuch, M.A., Ohallaron, D.R., Harkes, J., Satya-
narayanan, M., Tolia, N., Toups, M.: Design tradeoffs in apply-
ing content addressable storage to enterprise-scale systems based
on virtual machines. In: USENIX Annual Technical Conference
(2006)

14. Norcott, W.D.: Iozone web page. http://www.iozone.
org/, may 2012

15. Opendedup: Opendedup web page. http://opendedup.
org, may 2012

16. Paulo, J., Reis, P., Pereira, J., Sousa, A.: Dedisbench: A bench-
mark for deduplicated storage systems. In: In proceedings of 2nd
International Symposium on Secure Virtual Infrastructures (DOA-
SVI’12). Springer (2012)

17. Quinlan, S., Dorward, S.: Venti: A new approach to archival stor-
age. In: Conference on File and Storage Technologies (2002)

18. Tarasov, V., Mudrankit, A., Buik, W., Shilane, P., Kuenning, G.,
Zadok, E.: Generating realistic datasets for deduplication analysis.
In: USENIX Annual Technical Conference. Poster Session (2012)

19. Transaction processing performance council: TPC-C standard
specification, revision 5.5. http://www.tpc.org/tpcc/
spec/tpcc_current.pdf

20. Zhu, B., Li, K., Patterson, H.: Avoiding the disk bottleneck in the
data domain deduplication file system. In: Conference on File and
Storage Technologies (2008)

vol 29 no 1 November 2013 83

