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Presentation Scenario

Background

Before mobility there were classical distributed systems.

A definition [Coulouris and Dollimore 88] can distinguish those from
multi-processor systems and parallel architectures.

Shared resources needed to provide an integrated
computing service are provided by some of the computers in
the network and are accessed by system software that runs
in all of the computers, using the network to coordinate their
work and to transfer data between them.

The key is independent failure.

c©2004-2005 Carlos Baquero Mobile Distributed Systems I



Presentation Scenario

Background

Before mobility there were classical distributed systems.
A definition [Coulouris and Dollimore 88] can distinguish those from
multi-processor systems and parallel architectures.

Shared resources needed to provide an integrated
computing service are provided by some of the computers in
the network and are accessed by system software that runs
in all of the computers, using the network to coordinate their
work and to transfer data between them.

The key is independent failure.

c©2004-2005 Carlos Baquero Mobile Distributed Systems I



Presentation Scenario

Background

Before mobility there were classical distributed systems.
A definition [Coulouris and Dollimore 88] can distinguish those from
multi-processor systems and parallel architectures.

Shared resources needed to provide an integrated
computing service are provided by some of the computers in
the network and are accessed by system software that runs
in all of the computers, using the network to coordinate their
work and to transfer data between them.

The key is independent failure.

c©2004-2005 Carlos Baquero Mobile Distributed Systems I



Presentation Scenario

Mobile Distributed Systems

In the 90s technological progress made Distributed Systems go
mobile.

Machine hardware became transportable and then truly portable.

Communication methods proliferated and became ubiquitous.

Is a Mobile Distributed System just another kind of Distributed
System ?
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Presentation Scenario

Worst Case Distributed Systems

Mobile systems take distributed systems to extreme scenarios.

Citing [Pitoura and Samaras]

In a sense, mobile computing is the worst case of
distributed computing since fundamental assumptions about
connectivity, immobility and scale are no longer valid.

But mobile telephony already masks many difficulties . . .
Would it be enough to use GPRS/UMTS and traditional client/server
technology ?
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Presentation Scenario

Mirages of Connectivity

Connectivity is not really ubiquitous.

Pricing used to be a major limitation (before Kanguru).

GPRS/UMTS in PT: Megabyte for 5 to 1.2 euros (¿50Mb).

5Mb ≡ 2 min medium quality video ≡ 25 to 6 euros.

5Mb ≡ 15 photos at 1.2 MegaPixel.

Cheaper UMTS =⇒ Sponsored content.

Synchronous connections used to be cheaper.

With synchronous GSM connections 1Mb by 0.65 euros

In 2005 Kanguru droped prices by 3 orders of magnitude.

WIFI in PT: Hour near 5 euros.

Cybercafes are usually cheaper and should not be.
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Presentation Scenario

In search of sensible solutions

Ads are almost always misleading.

Technology and business models are moving targets.
Some relations seldom change:

Fixed vs Portable memory and CPU power.
Wired vs Wireless resources.
Power lines vs Batteries.

Fundamental results are forever.
Causality.
Atomicity.
Data convergence.
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Presentation Outline

Outline

Introduction to mobile data management: Concepts,
assumptions, motivations, modeling of mobile distributed
systems

Caching/Stashing: Single writers, invalidation, update
dissemination, prefetching. Case study.

Coordinated Replication: Locks, conflicts, state and log
propagation. Mobile file systems. Case study.

Consistency Models: Strong and weak consistency. Uses of
weak consistency. Divergence detection and quantification,
reconciliation. Case study.

Data Bases: Data snapshots, data reservations, transactions,
operation re-integration. Case study.
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Presentation Bibliography

Bibliography

Data Management for Mobile Computing. Evaggelia Pitoura,
George Samaras, 1998, Kluwer.

Mobility: Processes, Computers and Agents. Dejan Milojicic,
Fred Douglis, Richard Wheeler, 1999, ACM press.

Technical articles (Pointers to be provided in
http://gsd.di.uminho.pt).
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Mobile Computing Challenges

Mobile Computing Context and Challenges

Sources
The Challenges of Mobile Computing. G. Forman, J. Zahorjan,
April 1994, IEEE Computer.

Fundamental Challenges in Mobile Computing. M.
Satyanarayanan, 1996, ACM PODC.

Environnements Mobiles: Etude et Synthèse Bibliographique, A.
Baggio, 1995, Tech-report INRIA.

These papers survey the intrinsic characteristics of Mobile
Computing.
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Mobile Computing Challenges Constraints

Constraints [Satya 96]

Resources: Mobile elements are resource-poor relative to static
elements

For a given cost and level of technology, considerations of
weight, power, size and ergonomics will exact a penalty in
computational resources ... While mobile elements will
improve in absolute ability, they will always be resource-poor
relative to static elements.
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Mobile Computing Challenges Constraints

Constraints [Satya 96]

Vulnerability: Mobility is inherently hazardous

A Wall Street stockbroker is more likely to be mugged on
the streets of Manhattan and have his laptop stolen than to
have his workstation in a locked office physically subverted.
In addition to security concerns portable computers are
more vulnerable to loss or damage.

In addition: Some PDAs are less vulnerable to intrusion and data
logging.
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Mobile Computing Challenges Constraints

Constraints [Satya 96]

Connectivity: Mobile connectivity is highly variable in performance
and reliability

Some buildings may offer reliable, high-bandwidth wireless
connectivity while others may only offer low-bandwidth
connectivity. Outdoors, a mobile client may have to rely on a
low-bandwidth network with gaps in coverage.

In addition: Connectivity costs are also highly variable.
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Mobile Computing Challenges Constraints

Constraints [Satya 96]

Energy: Mobile elements rely on a finite energy source

While battery technology will undoubtedly improve over
time, the need to be sensitive to power consumption will not
diminish. Concern for power consumption must span many
levels of hardware and software to be fully effective.

In addition: Energy scavenging does not dispense power concerns.
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Mobile Computing Challenges Communication

Design Issues [FH 94, Baggio 95]
Communication Modes

Communication modes

Connected - Low cost and high bandwidth

Partially Connected / Semi-Connected - High cost or low
bandwidth

Disconnected - Null bandwidth

Special cases

Ad-hoc networks - Restrict connectivity horizons

Broadcast Disks - Asymmetric connectivity.

In addition: power conservation influences connection modes.
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Mobile Computing Challenges Communication

Design Issues [FH 94, Baggio 95]
Communication Modes

When fully connected mobile systems operate like classical
distributed systems. Full connections introduce opportunities for data
re-integration, system updates and preparation for future mobility.
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Mobile Computing Challenges Communication

Design Issues [FH 94, Baggio 95]
Communication Modes

When semi-connected the use of available bandwidth must be under
scrutiny. Compression, deltas shipping, aggregation, digests and
content distillation can help on reducing communication. High latency
and low bandwidth have strong impacts on “synchronous”
interactions in client/server models.
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Mobile Computing Challenges Communication

Design Issues [FH 94, Baggio 95]
Communication Modes

When disconnected mobile nodes are restricted to local data, calling
for disconnection preparation, replication, operation logging.
Optimistic techniques allow operation on shared data at the expense
of global consistency.
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Mobile Computing Challenges Mobility

Design Issues [FH 94, Baggio 95]
Mobility

Machine Mobility
Mobility leads to contacts with heterogeneous networks and changes
of identity. Mobility crosses administrative and security domains.
Modern tools like DHCP, SSH tunnels and VPNs alleviate some of the
problems. Mobile-IP (covered elsewhere) also addresses migration.
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Mobile Computing Challenges Mobility

Design Issues [FH 94, Baggio 95]
Mobility

Several paradigms come to the support of machine mobility.

Home Bases keep track of mobile machines/users and establish
fixed contact points. Mobile nodes register with their home
station as they roam.

Networks of Mobile Support Stations, sometimes with hand-off
procedures, mediate connectivity and storage requirements for
mobile nodes.
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Mobile Computing Challenges Mobility

Design Issues [FH 94, Baggio 95]
Mobility

User Mobility
Mobility of users introduces demands for access transparency,
portable authentication methods. User mobility is often a source of
unintended replication and with negative impacts on global
consistency.
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Mobile Computing Challenges Mobility

Design Issues [FH 94, Baggio 95]
Mobility

Application Mobility
Application mobility is here a consequence of user mobility. Active
applications associated to a user can follow it and dynamically
associate to its new location. Session management, migration of
profiles and locks are issues of concern. Mail applications are notable
examples of user initiated mobility.
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Mobile Computing Challenges Portability

Design Issues [FH 94, Baggio 95]
Portability

Power issues
Power conservation is a basic concern on the design and operation of
mobile hardware. Design factors include CPU speeds, backlighting,
memory size, communication activity and wireless medium protocols.
For instance WIFI power demands, unlike bluetooth, are important
strain on PDA batteries.
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Mobile Computing Challenges Portability

Design Issues [FH 94, Baggio 95]
Portability

Risks to data
Making computers portable heightens their risk of physical

damage, unauthorized access, loss, and theft.

The risks can be reduced by using cryptographic techniques,
avoiding the storage of sensible data, and easing backup procedures.
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Mobile Computing Challenges Portability

Design Issues [FH 94, Baggio 95]
Portability

Interface issues
The different interface models introduce both restrictions and
enhancements. Some issues concern, screen and font sizes, input
models (pen, buttons, wheels, . . . ). With specialized hardware other
I/O opportunities can be taken into account when devising solutions:
accelerometers, temperature, light and pressure sensors, cameras,
microphones, etc.
These issues will be covered elsewhere.
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Mobile Computing Challenges Portability

Design Issues [FH 94, Baggio 95]
Portability

Small storage and memory
Persistent storage and memory introduces important constraints both
on its capacity and on the access models, in particular on PDAs
where some operating systems abstractions are simplified. These
constrains often lead to tradeoffs among memory, computation and
consumption.
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Single Source of Updates Mobile WWW browsing

Mobile WWW browsing

Sources
MobiScape: WWW Browsing under Disconnected and
Semi-Connected Operation. Baquero, Fonte, Moura, Oliveira,
1995, CAN3.
Optimizing World-Wide Web for Weakly Connected Mobile
Workstations: An Indirect Approach. Liljeber, Alanko, Kojo,
Laamanen, Raatikainen, 1995, SDNE.
WebExpress: A System for Optimizing Web Browsing in a
Wireless Environment. Barron, Lindquist, 1996 ACM Mobicom.
Reducing WWW Latency and Bandwidth Requirements by
Real-Time Distillation. Fox, Brewer, 1996, 5th Int. WWW
Conference.
TeleWeb: Loosely Connected Access to the World Wide Web.
Schilit, Douglis, Kristol, Krzyzanowski, Sienicki, Trotter, 1996, 5th

Int. WWW Conference.
The Operation of the WWW in Wireless Environments.
Hadjiefthymiades, Merakos, 1999, Tech-report University of
Athens.
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Single Source of Updates Mobile WWW browsing

WWW Ancient History

First accesses by telnet to info.cern.ch and emacs WWW
clients.

Mosaic introduced graphical browsing, but made sequential
fetches.

Netscape escaped sequentiality by making parallel fetches of
page inline contents.
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Single Source of Updates Mobile WWW browsing

Mobiscape
Context

1995

Mobile laptops.

First browsers with proxy support.

Expensive dial-up connections over wired lines.

Slow Internet connectivity in LAN networks or slow HTTP
servers.

Caching for reference locality in users groups.
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Single Source of Updates Mobile WWW browsing

Mobiscape
Model

Mobiscape installs proxies both at the Mobile Host and Support
Station.

Proxies mediate access to LRU caches.

Caches are updated both by user activity and profile agents.

Profilers follow a used-defined script of
“should-always-be-in-cache” documents.

SS to MH communication is compressed.
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Single Source of Updates Mobile WWW browsing

Mobiscape
Caching in Mobiscape

Profiling is present both in the SS and MH, but the MH profiling
scripts must be more conservative.

Profiling specifies recycling periods and fetches start by
comparing headers.

User activity leads to new insertions in the cache.

Interrupted fetches continue at SS side.
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Single Source of Updates Mobile WWW browsing

Mobiscape
Issues

Connections may break so cache updates are only effective after
full fetch.

How to define which links to descend on prefetching ?

How to tune prefetch aggressiveness to available bandwidth ?

How to deal with images ?
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Single Source of Updates Mobile WWW browsing

Mowgli
Model and context

Proxies at both ends.

Targets wireless links.

Long round-trip time, latency.

Time based accounting.

c©2004-2005 Carlos Baquero Mobile Distributed Systems I



Single Source of Updates Mobile WWW browsing

Mowgli
Performance Improvements

Prefetching of page contents after parsing in proxies.

Aggressive DNS resolve at proxies.

Lossless and Lossy compression of same data types (e.g.
images).

Size limits on some contents.

Aggressive prefetching of potential links that keeps link use
optimal.
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WebExpress
Model and context

Proxies at both ends.

Assumes high cost in a per byte accounting.

High latency.

Low bandwidth.
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WebExpress
Protocol Reductions

All requests are routed over a single TCP/IP connection to avoid
repeating the costly connection establishment overheads. Since
HTTP is stateless there is redundancy among browser capabilities
headers, this can be reduced at the proxy layer.
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WebExpress
Caching

Caching is similar to Mobiscape. Is present at both ends. Objects
have a coherency interval (CI) measured in minutes, that triggers the
need to refresh objects. Coherency checks are only made on user
fetches, while Mobiscape profilers are more aggressive on the SS
side.
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WebExpress
Differencing

The concept of differencing is introduced with motivation on CGI
based content. Diffs act on a underlying base object that is subject to
base changes when contents drift to much from the active base. Diffs
are checked with CRCs.
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TeleWeb
Model

Client side proxy only.

Loose connectivity.

Adaptation to link changes.

TeleWeb advances the issue of monetary cost control to a
prime concern.
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TeleWeb
Caching

Consistency in terms of staleness checks should depend on
connectivity.

Empty memory on MHs is useless so cache should fill it and
adapt to demands.

Users should be asked on what they demand keeping.
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TeleWeb
Costs

Costs should be exposed to the users.

No transparency here.

Postpone operations until high connectivity.

Maximize use of pay-per-minute channels by batching.
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TeleWeb
Dynamics

Adapt to changing network interfaces and security boundaries.

Select the most appropriate of multiple net interfaces.

Session mobility follows user mobility: host-lists, history, cached
pages, etc.
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Distillation

Distillation is a highly lossy, real-time, datatype-specific
compression that preserves most of the semantic content of
the document.

Examples include images, postscript documents, and, why not,
audio.

Target device capabilities can drive distillation.

Can be achieved with only a server side proxy.
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Distillation
Refinement

A distilled content can be subject to selective refinement. Images can
be partially enlarged, colors augmented, lossy compression reduced.

The same concepts can be applied to text summarization.
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Distillation
Cycles, Bandwidth and Battery

Distillation trades off CPU cycles at the SS for bandwidth in the
loosely connect channel.

The impact on the MH side is small but some complex lossy
compression formats might need extra CPU in MHs before
reconstruction.
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Work-Package

Mobile WWW

Review these papers and follow the subsequent literature. After
getting up to date on the subject the target is to present for evaluation
an abstract that analysis Mobile WWW in the present context and
proposes useful techniques and possibly some new ideas.

Tools: start with Google and CiteSeer.
Teams: Two to three co-authors.
Format: Max 5 pages abstract.
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Delta Propagation

Sources
Efficient Algorithms for Sorting and Synchronization. Andrew
Tridgell, PhD Thesis, 1999.

Algorithms for Delta Compression and Remote File
Synchronization. Torsten Suel and Nasir Memon.

xdelta. http://www.xdelta.org/
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Delta Propagation
rsync [Tridgell 99]

Aims
Work on binary data, not just text.

Size on the order of a compressed diff.

Fast for large files and large collections.

No prior knowledge on files to sync, use similarities.

High latencies so reduce round trips on protocol.

Computationally cheap, is possible.
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Delta Propagation
rsync [Tridgell 99]

The aim is for B to sync bi from a ai in A.
1 B send some data S based on bi to A.
2 A matches this against ai and sends soma data D to B.
3 B constructs b′i using bi , S and D.

. . . the algorithm requires a probabilistic basis to be useful.
The data S that B sends to A will need to be much smaller
than the complete files . . . unless links are asymmetric, and
fast from B to A.
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Delta Propagation
rsync [Tridgell 99]

First Attempt
1 B divides bi into N equally sized blocks bj

i and computes a
signature Sj on each block. These signatures are sent to A.

2 A divides ai into N blocks ak
i and computes Sk for each block.

3 A searches for Sj matching Sk for all k .
4 for each k , A send to B either a matching block index j or a literal

block ak
i .

5 B constructs ai using blocks from bi or literal blocks from ai .

Question

What is the weakness in this algorithm ?

Answer

One single byte insertion ruins it.
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Delta Propagation
rsync [Tridgell 99]

To solve the problem A needs to generate signatures not only at the
block boundary but at each byte boundary to check matches with the
received signatures. This allows arbitrary length insertions and
deletions.
However the computational cost would demand a easy/weak
signature and such signature would lead to unaffordable false positive
matches.

Question

How to solve this dilemma and choose between a weak or a strong
signature ?

Answer

Don’t choose, use both !

c©2004-2005 Carlos Baquero Mobile Distributed Systems I



Single Source of Updates Delta Propagation

Delta Propagation
rsync [Tridgell 99]

To solve the problem A needs to generate signatures not only at the
block boundary but at each byte boundary to check matches with the
received signatures. This allows arbitrary length insertions and
deletions.
However the computational cost would demand a easy/weak
signature and such signature would lead to unaffordable false positive
matches.

Question

How to solve this dilemma and choose between a weak or a strong
signature ?

Answer

Don’t choose, use both !

c©2004-2005 Carlos Baquero Mobile Distributed Systems I



Single Source of Updates Delta Propagation

Delta Propagation
rsync [Tridgell 99]

To solve the problem A needs to generate signatures not only at the
block boundary but at each byte boundary to check matches with the
received signatures. This allows arbitrary length insertions and
deletions.
However the computational cost would demand a easy/weak
signature and such signature would lead to unaffordable false positive
matches.

Question

How to solve this dilemma and choose between a weak or a strong
signature ?

Answer

Don’t choose, use both !

c©2004-2005 Carlos Baquero Mobile Distributed Systems I



Single Source of Updates Delta Propagation

Delta Propagation
rsync [Tridgell 99]

The solution (and the key to the rsync algorithm) is to use
not one signature per block, both. The first signature needs
to be very cheap to compute for all byte offsets and the
second needs to have a very low probability of collision.

The second signature is only computed to confirm positive matches
on the first.
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Delta Propagation
rsync [Tridgell 99]

Two signatures algorithm
1 B divides bi into N equally sized blocks bj

i and computes
signatures R j and H j on each block. These signatures are sent
to A.

2 For each byte offset o in ai A computes Ro for the block starting
in o.

3 A compares Ro to each R j received form B.
4 for each o where Ro matches R j , A computes Ho and compares

with H j .
5 for each position o, A send to B either a matching block index j or

a literal byte.
6 B constructs ai using blocks from bi and literal bytes from ai .
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Delta Propagation
rsync [Tridgell 99]

Strong Signature
Selection of the strong signature H is fairly simple, a
cryptographically strength signature (MD4 in rsync 99, MD5, SHA1)
will suffice and ”overkill”for the present needs.

For a b bits signature:

The probability that a randomly generated block has the same
signature than a given block is O(2−b).

The computational difficulty of finding a second block that has
the same signature of a given block is roughly O(2b).

The individual bits in the signature are uncorrelated and have a
uniform distribution.
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Delta Propagation
rsync [Tridgell 99]

Fast Signature
The fast signature acts as a filter that prevents excessive use of the
strong one. The first one tested in rsync was just a concatenation of
the first 4 and last 4 bytes of each block. This was poor and lead to
common false positives. It was important to depend on all the block
bytes.

With R(a) =
∑

ai the signature depends on all block bytes and can
be computed in a ”sliding fashion”by adding and subtracting when
incrementing the offset.

However this signature is independent on the order of bytes. rsync
uses a signature that is dependent on the order and can be
incrementally computed.
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Delta Propagation
rsync [Tridgell 99]

Candidate signatures are found by a hash table with 16 bits index on
the fast signature and a linear search in each hash position.

There is
a final signature “checksum” on the whole file to avoid strength
dependent on the number of blocks. Multiple files are pipelined for
latency reduction.
The choice of block sizes is governed by:

Block size must be larger than the combined size of R and H.

A larger block size reduces the size of sent signature information
from B to A.

A smaller size is likely to allow more matches and reduce the
number of bytes transmitted from A to B.

Links might not always be symmetrical
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Delta Propagation
xdelta [MacDonald 98]

xdelta was based on rsync but optimized to take advantage on
the presence of both files. Consequently the cost of sending
signatures could be ignored and the produced deltas optimized.

xdelta optimization allowed much smaller block sizes with
respect to rsync.

Unlike the text based “diff” algorithms xdelta and rsync can only
be applied to the original files.

HTTP

Both algorithms can be used for HTTP reduction and both drive
distinct Web proxy prototypes.
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Broadcast Disks

Broadcast Disks exploits communication asymmetry by
treating a broadcast stream of data that are repeatedly and
cyclicly transmitted as a storage device. The broadcast disk
technique has two main components. First, multiple
broadcast programs (or “disks”) with different latencies are
superimposed on a single broadcast channel, in order to
provide improved performance for non-uniform data access
patterns and increased availability for critical data. Second,
the technique integrates the use of client storage resources
for caching and prefetching data that is delivered over the
broadcast.

Papers

http://www.cs.umd.edu/projects/bdisk/
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Causality

Sources
Time, Clocks, and the Ordering of Events in Distributed Systems,
Leslie Lamport, Communications of ACM, 1978.

Detecting Causal Relationships in Distriuted Computations: In
search of the Holy Grail. Schwarz and Mattern, Distributed
Computing, 1994.

Detection of mutual inconsistency in distributed systems. Parker
et al, IEEE Transactions on Software Engineering, 1983.

Advanced Concepts in Operating Systems, Singhal and
Shivaratri, MIT Press and Mc Graw Hill, Chapter 5.

Version stamps: Decentralized Version Vectors. Almeida,
Baquero and Fonte, IEEE ICDCS, 2002.

The Hash History Approach for Reconciling Mutual
Inconsistency. Hoon et al, IEEE ICDCS, 2003.
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Limitations of Distributed Systems [Singhal]

Absence of a Global Clock
In a distributed system there exists no systemwide common

clock (global clock) . . . the notion of global time does not
exist.

Absence of Shared Memory

Since the computers in a distributed system do not share
common memory, an up-to-date state of the entire system is
not available to any individual process.

In asynchronous distributed systems, processes communicate by
exchanging messages over communication channels. Both are
subject to arbitrary delays. respectivelly, in computation and
transmition time.
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Lamport’s Causality [Lamport 78]

Lamport defines a “happened before” relation betwen events in a
distributed computation. Events related under this notion are
connected by one or more directed paths in a time diagram for a
given computation.

A time diagram of a distributed computation

Pa •a1 //

��-
--

--
--

--
--

--
--

•a2

Pb •b1 //

))SSSSSSSSSSSSSSSSSSSSS •b2

��<
<<

<<
<<

<

Pc •
c1

// •
c2

// •
c3

a1 and b1 are related in real time but are not causaly related.
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A Causality Definiton

Definition

→ is the smallest transitive relation satisfying:

a → b, if a and b are events in the same activity and a occurred
before b.

a → b, if a is the event of sending a message and a is the
corresponding event of receiving that message.

Causality defines a partial order relation (E ,→) on the set of events
E .
In addition: Two events a and b are concurrent (a ‖ b) if and only if
¬(a → b) ∧ ¬(b → a).
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Some Order Theoretic Tools [Mattern]

Let E denote the set of events in a distributed computation, and let
(S, <) denote an arbitrary partially ordered set. Let φ : E −→ S
denote a mapping.

1 (φ,<) is said to be consistent with causality, if for all a, b ∈ E .
φ(a) < φ(b) if a → b.

2 (φ,<) is said to characterize causality, if for all a, b ∈ E .
φ(a) < φ(b) iff a → b.

Real time and causality

Real time is consistent with causality, but does not characterize it.
Real time is a total order and total orders do not characterize partial
orders.
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Lamport’s Logical Time [Lamport 78]

Lamport defines logical time as total order consistent with causality.

Logical Time: Lamport’s Logical Clocks
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Relations

Logical time is consistent with causality.
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Lamport’s Logical Time [Lamport 78]
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Causality Characterization

Causal Histories

Pa •
{a1} //

��-
--

--
--

--
--

--
--

•
{a1,a2}

Pb •
{b1} //

))SSSSSSSSSSSSSSSSSSSSS •
{b1,b2}

��<
<<

<<
<<

<

Pc •
{a1,c1}

// •
{a1,b1,b2,c1,c2}

// •
{a1,b1,b2,c1,c2,c3}

Relations

Causal histories characterize causality.

There are ample oportunities for compression, by taking the last
event index from each site.
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Vector Clocks: [Mattern 89][Fidge 88]

Vector Clocks

Pa •
[1,0,0] //

��-
--

--
--

--
--

--
--

•
[2,0,0]

Pb •
[0,1,0] //

))SSSSSSSSSSSSSSSSSSSSS •
[0,2,0]

��<
<<

<<
<<

<

Pc •
[1,0,1]

// •
[1,2,2]

// •
[1,2,3]

Relations

Vector clocks characterize causality (and causal histories).
All these relations are order isomorphic.
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Charron-Bost’s minimality result

Concerning the size of logical clocks in distributed systems.
Charron-Bosts, Information Processing Letters, 1991.

Minimality

The minimality result by Charron-Bost, indicates that vector clocks are
the most concise characterization of causality among process events.

However, not all causality is process causality.
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Data Causality

Consider a set of data replicas subject to two operations

Local updates on the state of a replica.

Pairwise synchronizations among two replicas bringing them to a
common state.

Such model englobes several classes of systems, ranging from
partitioned replicated system with strong consistency in each
partition, to replicated file systems, databases and some classes of
code version control systems.
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Data Causality

A sample run

Ra •

�O
�O
�O
�O

◦ // • // •OO

�� �O
�O
�O
�O

◦ // •

Rb •

�O
�O
�O
�O

// • // •OO

�� �O
�O
�O
�O

Rc • ◦ // • // •

The sign ◦ represents updates. Synchronizations are depicted by
vertical arrows.
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Data Causality

Tagging with causal histories

Ra •

�O
�O
�O
�O

◦
{}
// •
{a1}

// •OO

�� �O
�O
�O
�O

◦
{a1}

// •
{a1,a2}

Rb •

�O
�O
�O
�O {}

// •
{a1}

// •OO

�� �O
�O
�O
�O{a1,c1}

Rc • ◦
{}

// •
{c1}

// •
{a1,c1}

Again, there are ample oportunities for compression, by taking the
last event index from each site.
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Version Vectors [Parker 83]

Parker et al. Detection of mutual inconsistency in distributed systems.
IEEE TSE 1983.

Tagging with version vectors

Ra •

�O
�O
�O
�O

◦
[0,0,0]

// •
[1,0,0]

// •OO

�� �O
�O
�O
�O

◦
[1,0,0]

// •
[2,0,0]

Rb •

�O
�O
�O
�O [0,0,0]

// •
[1,0,0]

// •OO

�� �O
�O
�O
�O [1,0,1]

Rc • ◦
[0,0,0]

// •
[0,0,1]

// •
[1,0,1]

Question

Can we extrapolate that version vectors are minimal characterizations
for data causality ?

In fact, the problems addressed are different.
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Frontiers

Version stamps - decentralized version vectors. Almeida, Baquero,
Fonte. IEEE ICDCS 2002

At any given time only 3 replicas exist.

Ra
___ •

�O
�O
�O
�O

◦ // • // •OO

�� �O
�O
�O
�O

◦ // • ___

Rb
___ •

�O
�O
�O
�O

// • // •OO

�� �O
�O
�O
�O

___

Rc
___ • ◦ // • // • ___
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Version Vectors order limited sets

Bounded Version Vectors. Almeida×2, Baquero. DISC 2004

If we consider the role of version vectors, data causality,
there is always a limit to the number of possible relations
that can be established on the set of replicas. This limit is
independent on the number of update events that are
considered on any given run. For example, in a two replica
system {ra, rb} only four cases can occur: ra = rb, ra < rb,
rb > ra and ra ‖ rb. If the two replicas are already divergent,
the inclusion of new update events on any of the replicas
does not change their mutual divergence and the
corresponding relation between them.
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Version Vectors vs Vector Clocks

Vector Clocks

Vector clocks order an unlimited number of events occurring in a
given number of processes.

Version Vectors

Version vectors order a given number of replicas, according to an
unlimited number of update events.

This distinctions opened the path to bounded version vectors without
contradicting Charron-Bost’s minimality.
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Bounded Version Vectors [Almeida, Baquero 04]

Bounded version vectors can characterize data causality with a state
that is independent on the number of updates. The required state is
polynomial with respect to the number of replicas.

Let U be the number of updates, and N the number of replicas.

Traditional version vectors have scale O(N log2(U))

Bounded version vectors have scale O(N3 log2(N))

Consequently, the bounded approach can only be efficient for very
small numbers of replicas or extremely high update rates.
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Identity Management

All the previous techniques (causal histories, vector clocks, version
vectors, bounded version vectors) depend on the ability to name
participant replicas.

When the number of replicas is known in advance they are given
a total order and depicted in a vector. We have {1, 2, . . . , N} → X
In general, a mapping from replicas ids to “counters” is used.
ID ↪→ X

being X an integer, a set of unique events, or a bounded stamp.
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Identity Management

In order to establish unique identities we need centralized
configuration (eventually hierarchical) or consistent distributed
approaches (envolving consensus).
Alternativelly, there are random id approaches, but those are subject
to the statistics of the birthday problem.

Birthday problem

The probabibility of two of more colisions when using n ids from a
universe of d distinct ids is: P2(n, d) = 1− d!

(d−n)!dn .
A classical case is: P(23, 365) ≈ 0.507297
See: http://mathworld.wolfram.com/BirthdayProblem.html

Mobile systems and ad-hoc networking call for autonomous data
causality.
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Autonomous Causality

Under autonomous causality we have a variable number of replicas:
Each replica can register updates and create new ones; Any two
replicas can merge/synchronize.

With autonomous causality we can
model standard data causality.

Sample run, with frontiers

d1
// g1

b1

88ppppppp

&&NNNNNNN

a1
◦ // a2

88ppppppp

''NNNNNNN e1 // f1

AA����������

c1
◦ // c2

◦ // c3

88ppppppp

time //

In order to characterize this type of run, first we must handle globally
unique ids. At least unique in each frontier.
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Version Stamps [Almeida, Baquero, Fonte 02]

The strategy to unique ids relies on a recursive proceedure that
partitions the id space into separate zones. In order to achive this,
individual ids must change.

Version stamps ids

[|00] // [|00+01+1]

��
[|0]

<<xxxx

""F
FFF

[|0+1]

��
[|] // [|]

>>}}}}

  A
AAA

[|01] // [|01+1]

=={{{{{{{{{{{{
[|]

[|1] // [|1] // [|1]

99ttttt

Now we need to correctly anotate updates.
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��
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Version Stamps [Almeida, Baquero, Fonte 02]

Version stamps

[|00] // [1|00+01+1]

��
[|0]

<<xxxx

""F
FFF

[1|0+1]

��
[|] ◦ // [|]

>>}}}}

  A
AAA

[|01] // [1|01+1]

<<xxxxxxxxxxxx
[|]

[|1]
◦ // [1|1]

◦ // [1|1]

88qqqqq

Consecutive updates are compressed and the mechanisms simplifies
after joining “adjacent” replicas.

The week point of this techinique is that some patterns of runs lead to
very long identifiers, if the number of replicas is kept high all the time.
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��
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FFF
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��
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>>}}}}

  A
AAA
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Hash Histories [Hoon 03]

The Hash History Approach for Reconciling Mutual Inconsistency.
Brent ByungHoon Kang, Robert Wilensky and John Kubiatowicz.
IEEE ICDCS 2003.
Quoting:

Hash histories,consisting of a directed graph of version
hashes, are independent of the number of active nodes but
dependent on the rate and number of modifications.

This approach shows that using hashes of replica contents we can
track causality. While the authors keep a partial order on the hashes,
a similar result can be obtained by a causal history whose ids are
based on hashes.
The correctness of these techniques is vulnerable to statistical errors,
and in some cases to the birthday problem.
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File System Mobility

Sources
Disconnected Operation in the Coda File System, Kistler,
Satyanarayanan, ACM Transactions on Computer Systems,
1992.

The Coda Distributed File System, Braam, Linux Journal, 1998.

Primarily Disconnected Operation: Experiences with Ficus,
Popek et al, 2nd Workshop on Management of Replicated Data,
1992.

Rumor: Mobile Data Access Through Optimistic Peer-to-Peer
Replication, Popek et al, 1998.

AdHocFS: Sharing Files in WLANs. Boulkenafed, Issarny. 2nd
IEEE International Symposium on Network Computing and
Applications. 2003.

Aditional sources: MioNFS, Panasync, Ivy, Intermezzo, FEW.
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Coda [Satya 92]

Coda was probabaly the first distributed file system that addressed
mobility. Its genesis,in the early 90s, had a major influence in the
mobile computing field.
Being a distributed file system, Coda is related to NFS and in
particular to AFS (Andrew File System). In these systems, users
mount into their local directory structures remote file systems. Failure
of a server presented serious inconvenience to users.
In the AFS model a global hierarchical namespace is provided to
client nodes by the federation of servers. In Coda this namespace
starts under /coda .
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Coda [Satya 92][Braam 98]

Clients view Coda as a single, location transparent shared
Unix file system. The Coda namespace is mapped to
individual file servers at the granularity of subtrees called
volumes. At each client a cache manager (Venus)
dynamically obtains and caches vlume mappings.

A volume has a name and an unique ID in the federation of servers. It
is possible to mount a volume anyware under /coda .

Mounting in Coda

cfs makemount u.braan /coda/user/braam
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Coda [Satya 92][Braam 98]

Coda uses two distinct mechanims to achieve high availability: Server
Replication and Disconnected Operation.

Server replication allows volumes to have read-write
replicas at more than one server. The set of replication sites
for a volume is its volume storage group (VSG). The subset
of volumes that is currently accessible is a client’s
accessiblei VSG (AVSG). . . . Venus uses a cache coherence
protocal based on callbacks to guarantee that an open of a
files yields its latest copy in the AVSG. . . . Modifications in
Coda are propagated in parallel to all AVSG sites, and
eventually to missing VSG sites.
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Coda [Satya 92][Braam 98]

Disconnected operation takes effect when the AVSG
becomes empty. While disconnected, Venus services file
requests by relying solely on the contents of its cache.
When disconnection ends, Venus propagates modifications
and reverts to server replication.

Check run on [Satya 92] paper.
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Coda [Satya 92][Braam 98]
First vs Second CLass Replication

Coda advocates two classes of replicas. They notice that diferences
between clients and servers justify a distinguished treatment of
replicas.

It is appropriate to distinguish between first class replicas
on servers, and second class replicas (i.e. cache copies) on
clients. . . . Whereas server replication preserves the quality
of data in face of failures, disconnected operation forsakes
quality for availability. . . . Server replication is expensive
because it requires additional hardware. Disconnected
operation, in contrast, costs little.
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Coda [Satya 92][Braam 98]
Optimistic vs Pessimistic Replica Control

Coda opted for optimistic replication, one of the reasons was their
observation that the degree of write-sharing in typical Unix workloads
is very small.

Always the case?

In CVS workloads there is a much larger amount of write sharing.

A pessimistic strategy would prevent updates when primary replicas
are partitioned (or only allow in a single partition). Updates in
disconnected operation should depend on the possession of a write
token, that could have a given time-lease. However this has impacts
on availability.

Low write sharing

Low write sharing could also serve as an argument for pessimistic
approaches, since availability would rarely be affected if token
movement is efficient. As explored in MioNFS [Guedes, Moura].
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Coda [Satya 92][Braam 98]
Implementation

In Linux Coda installs a kernal module that handles calls within the
Coda sub-tree in the file system. This module is minimalistic, it keeps
a cache of recently handled requests and conveys missed hits to a
user level cache manager (Venus). This process checks a client disk
cache and mediates contacts with volume servers. Updates are
propagated upon file closure.
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Coda [Satya 92][Braam 98]
Implementation

Communication with servers is “read-one, write-many”. Files are read
from a singleserver in the AVSG and updates are propagated to all
available servers.
Coda identifies files by a 32 bit FID, this FID is unique in a cluster of
servers. The unit of replication here is the volume.
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Coda [Satya 92][Braam 98]
Conflicts

Conflicts can occur between disconected replicas and the AVSG or
among VSG partitions. There is no direct communication between
mobile clients.
Coda tries to apply automatic conflict resolution and when that fails
flags conflicts and asks for user intervention. Version vectors are
used for conflict detection.
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Ficus e Rumor [Popek et al]

In Ficus/Rumor all replicas are first class. Consequently, mobile
nodes can do direct sychronizations without mediation from a base
station.

While Coda explicitly changes its state between connected,
disconnected, and reintrgrating, the Ficus model does not
distinguish between connected and disconnected modes.
Peers are dynamically connected to various degrees.
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Ficus and Rumor [Popek et al]
Ficus Overview

Ficus is a distributed file system featuring optimistic
replication. The default synchronization policy provides
single copy availability; so long as any copy of a data item is
accessible, it may be updated. Once a single replica has
been updated, the system makes a best effort to notify all
accessible replicas that a new version of the object exists.
Those replicas then attempt to pull over the new version.
Ficus guarantees no lost update semantics despite this
optimistic concurrency control. Conflicting updates are
guaranteed to be detected, allowing recovery after the fact.
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Ficus and Rumor [Popek et al]
Ficus Overview

Update propagation is the best-effort attempt to inform
other replicas immediately of the presence of changes. In
addition, a background process known as reconciliation runs
on behalf of each replica after each reboot and periodically
during normal operation. It compares all files and directories
of a local volume replica with a corresponding remote
replica, pulling over any missed updates and detecting any
concurrent update conflicts. In the case of directories, most
conflicts are repaired automatically by reconciliation, while
for files, conflicting versions are marked as such and their
owner notified.
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Ficus and Rumor [Popek et al]
Reconciliation

Early Ficus designs called for all-pairs reconciliation, but the
cost of O(n2) message exchanges proved too expensive.
The alternative currently in use is to reconcile in a ring, each
site pulling from the previous. To make this reconciliation
topology resilient to failure, the ring skips sites which are
inaccessible.
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Ficus and Rumor [Popek et al]
Reconciliation

The usage patterns of Ficus confirmed the a low occurrence of write
conflicts. They identify an important factor, the human write token.
This occurs when users replicate essentially read-only files and files
whose updates are done by a single user. In such case the user will
issue updates in sequence in real time and conflicts can be avoided if
connectivity is re-established as the user moves.
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Ficus and Rumor [Popek et al]
Rumor

Rumor is an evolution of Ficus that allows oportunistic update
propagation among sites. Unlike Ficus, rumour operates entirely at
the application level. Both Ficus and Rumor use version vectors.

Rumor Reconciliation

Reconciliation operates between a pair of communicating
replicas in a one-way, pull-oriented fashion. A one-way
mode is more general than a two-way model, and lends
support for inherently uni-directional forms of
communication, such as floppy-disk transfer.
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Ficus and Rumor [Popek et al]
Rumor Reconciliation

Reconciliation involves only pairs of replicas, rather than all
replicas, because there is no guarantee that more than two
will ever be simultaneously available. For example, mobile
computers operating in a portable workgroup mode may
only be connected to a single other computer. Additionally,
operating in a point-to-point mode, with an underlying
gossip-based transfer mechanism, allows a more flexible
and dynamically changeable network configuration in terms
of the machines’ accessibility from each other.
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AdHocFS [Boulkenafed, Issarny]

From this system we can highlight their hybrid solution to consistency
management.

Here they consider partitionable groups of mobile machines.
Optimism is used accross partitions, with divergence detection and
flaging of conflicts. However, within each partition write-locks are
used to avoid divergence, while using update propagation to keep all
machines in sync.
Loss of availability, such as when editing a common file accross
machines, is suggested to be overcome by a finer grain fragmentation
of the document (a commmon approach for source code and
LATEXdocs).
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Filesystem Mobility AdHocFS

Design options in Mobile File Systems

Explore

Existing systems have explored some design options. Not all these
options are compatible and while some can be left to the users, at
some point some decisions must be made. Building on the analysed
systems we can explore some alternative designs.
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Merge and Reconciliation

Sources
What is Unision? A formal specification and reference
implementation of a file synchronizer, Pierce, Vouillon, 2004.

Resolving File Conflicts in the Ficus File System, Reiher,
Heidemann, Ratner, Skinner, Popek, Usenix 1994.

Using Structural Characteristics for Autonomous Operation,
Baquero, Moura, ACM SIGOPS Review 1999.

(IceCube) Semantics-based reconciliation for collaborative and
mobile systems. Preguia, Shapiro, Matheson, COOPIS 2003.

See also: Bayou, Xerox Parc.
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Merge and Reconciliation

Reconciliation Overview

Divergence under optimistic replication ⇒ reconciliation.

Replicas can be opaque or structured elements (files vs
filesystems).

Detection of non-conflicting divergence (dominating replicas)
simplifies reconciliation.

Pairwise reconciliation may not suffice for n-ary reconciliation
(Unison).

After reconciliation two replicas might be identical or merely
closer.

Reconciliation can be log based or state based.
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File System Reconciliation

Reconciliation of directory trees is a special case of structured
reconciliation.

The Unison file synchronizer reconciles directory trees between
two replicas. This system has been formaly specified.

Unison is state based and keeps the last synchronized state
between the two replicas. This state is used to infer state
evolution in both repplicas.

One relevant design choice in Unison is to keep replicas
divergent (partially synchronized) when automated reconciliation
fails.
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Unison: Create/Remove Conflicts

Consider the following state in two divergent replicas:

A DIR{ f.FILE(“Ag”) g.FILE(“Cl”) }
B DIR{ g.FILE(“Cl”) }

What would be the desired reconciliation ? Preserving user
intentions.
We need to know the last common state:

O DIR{ f.FILE(“Ag”) g.FILE(“Cl”) }
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Unison: Reconciliation 1

Input:

O DIR{ f.FILE(“Ag”) g.FILE(“Cl”) }
A DIR{ f.FILE(“Ag”) g.FILE(“Cl”) }
B DIR{ g.FILE(“Cl”) }

Output:

A’ DIR{ g.FILE(“Cl”) }
B’ DIR{ g.FILE(“Cl”) }
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Merge and Reconciliation File Systems

Unison: Preserve User Changes

Input:

A DIR{ f.DIR{} g.FILE(“Cl”) }
B . . .

O DIR{ f.FILE(“Ag”) g.FILE(“Cl”) }
Output:

A’ DIR{ f.DIR{} g.FILE(“Cl”) }
B’ . . .

Since f changes from O to A then f in A’ must be preserved from A.
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Merge and Reconciliation File Systems

Unison: Propagate Only User Changes

No new changes can be created – is must never “make anything up”.
Input:

A DIR{ f.FILE(“Ag”) g.FILE(“Cl”) }
B DIR{ f.DIR{} g.FILE(“Cl”) }
O DIR{ f.FILE(“Ag”) g.FILE(“Cl”) }

Output:

A’ DIR{ f.DIR{} g.FILE(“Cl”) }
B’ . . .

Since f in A’ is diferent from f in A it must have come from B.
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Unison: Modify/Modify Conflicts

Upon conflicting divergence Unison chooses two keep both versions.
Input:

A DIR{ f.FILE(“Fe”) g.FILE(“Cl”) }
B DIR{ f.FILE(“Cu”) g.FILE(“Ni”) }
O DIR{ f.FILE(“Ag”) g.FILE(“Cl”) }

Output:

A’ DIR{ f.FILE(“Fe”) g.FILE(“Ni”) }
B’ DIR{ f.FILE(“Cu”) g.FILE(“Ni”) }

And the new last common sate ?

The new O can come integrate non-conflicting changes:

O’ DIR{ f.FILE(“Ag”) g.FILE(“Ni”) }
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Unison: Remove/Modify Conflicts

Input:

A DIR{ g.FILE(“Cl”) }
B DIR{ f.FILE(“Cu”) g.FILE(“Cl”) }
O DIR{ f.FILE(“Ag”) g.FILE(“Cl”) }

Output:

A’ DIR{ g.FILE(“Cl”) }
B’ DIR{ f.FILE(“Cu”) g.FILE(“Cl”) }

In this case O is unchanged.
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Unison: Create/Create Conflicts
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Merge and Reconciliation File Systems

Unison: Conflicts across paths

Now we have a delete/modify conflict on diferent levels of the file tree.
Input:

A DIR{ d.DIR{f.FILE(“Fe”) g.FILE(“Cl”)} }
B DIR{ }
O DIR{ d.DIR{f.FILE(“Ag”) g.FILE(“Cl”)} }

Output:

A’ DIR{ d.DIR{f.FILE(“Fe”) g.FILE(“Cl”)} }
B’ DIR{ }

Alternative

A’ DIR{ d.DIR{f.FILE(“Fe”) } }
B’ DIR{ }

Here the change would only lock the branch and not the whole
sub-tree.
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Merge and Reconciliation File Systems

Unison: Wrap up

Unison will try to keep the stated properties and make as much
reconciliation as possible, bringing the two replicas to a closer state.
Recall that since A’ can de distinct from B’ a trivial reconciliator that
makes A’=A and B’=B would satisfy the correctness properties. In
this sense Unison defines a Maximality property that leads to the
propagation of non-conflicting changes.
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Ficus: Resolving Conflicts

The ficus paper “Resolving File Conflicts in The Ficus File System”
deals both with the notion of structural conflicts in directory trees and
with file conflicts. In the later case, several file conflict resolvers are
discussed.
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Merge and Reconciliation Data Types

Ficus: Conflict Types

Name Conflicts

Identical names for autonomously created files are solved by
appending distinct sufixes to file names.

Remove/Update

Here the choosen solution is to move removed files (updated
elseware) to a orphan section of the volume.

Update/Update

DIR Update/Update: Creation of clashing file names leads to
Name Conflicts. Removals can lead do Remove/Update conflicts.

FILE Update/Update: Divergent file contents found to be in
conflict trigger file specific conflict resolvers.
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Merge and Reconciliation Data Types

Ficus: Conflict Types

Ficus allows users to enable automated conflict resolution for some
file types and conflict types.

Automatic Backup Files

Some editors create automatic backup files. The resolver can
arbitrarily select one of the conflicting backup files. More conservative
options can be adopted.

“Junk” Files

Some files can usually be deteled without harm. core dumps, . . .
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Merge and Reconciliation Data Types

Ficus: Conflict Types

Reconstructable/Dependent files

Some files often exhibit dependencies. This can lead to file
reconstruction in the makefile tradition or to obsolete files, such as
intermediate files in LATEXcompilations.

Structured Files

Files such as .newsrc , where USENET newsgroups selection is
stored are easy to reconcile in a deterministic way. Another case are
ordered lists of game scores.

Since Ficus does not rely on comparision with last common states,
nothing prevents n-ary reconciliation by iterating pairs of
reconciliations.
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Merge and Reconciliation Data Types

Ficus: Conflict Statistics

Some statistics collected during 9 months of Ficus operation:
14,142,241 FILE Updates

14,141,752 Non-Conflicting
489 Conflicting

162 Automatic
176 Potentially Automatic
151 Manual

98 DIR Update/Remove conflicts
708,780 DIR Name Creations

708,652 Non-Conflicting
128 Conflicting
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Merge and Reconciliation Data Types

CADT: Convergent Abstract Data Types

Some structured file types (unfortunatelly not all) can be reconciled
by automated means without compromising divergent user changes,
thus preserving intentions. This can be formally captured by
representing such types as abstract data types, exhibiting a state and
operations that change the state.

Newsrc: A convergent file type

alt.elvis.sighting:33,45,60-200,356
alt.emulators.ibmpc.apple2:
comp.object:1-2628

This file type is a hierarchical composition of simpler convergent data
types: Maps, Sets and Growing Sequencies.
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Merge and Reconciliation Data Types

CADT: Enshuring Convergence

Some properties of convergent data types:

They must define an order of evolution (in fact a pre-order). If a
user updates replica b to b′ then b ≤ b′. Not all user operations
need to advance the replica.

Copying a replica a into a new replica b should create equivalent
replicas, thus a ∼= b. In fact, a ∼= b is equivalent to a ≤ b and
b ≤ a.

A reconciliation m from a and b, should be such that both a ≤ m
and b ≤ m. In addition there should be no m′ distinct from m
such that m′ ≤ m ∧ a ≤ m′ ∧ b ≤ m′.
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Merge and Reconciliation Data Types

CADT: Enshuring Convergence

Removing non-determinism:

Idempotent The reconciliation of a replica with herself should
produce an unchanged replica.

Commutative The order in which two replicas are supplied to the
reconciliation procedure should not be relevant.

Associative Pairwise reconciliation of three or more replicas should
derive the same final result, independently of the actual
order that was applied in the reconciliation.
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Merge and Reconciliation Data Types

CADT: IncSet

Type: INCSET extends BASIC

Write : Storage
Insert : Elem
Find : Elem → Bool
Init , Fork , Join, Leq
Σ = 2X I = Y

Init()
σ := {} ι :=⊥
Insert(e)

σ := σ ∪ e

Find(e) → b

b :=

(
true if e ∈ σ

false if e 6∈ σ

Join(σι′, σι′′) → σι

σ := σ′ ∪ σ′′ ι := ι′ ∨ ι := ι′′

Leq(σι′, σι′′) → b

b :=

(
true if σ′ ⊆ σ′′

false if σ′ * σ′′

c©2004-2005 Carlos Baquero Mobile Distributed Systems I



Merge and Reconciliation Data Types

CADT: IncDecSet
Type: INCDECSET extends BASIC

Write : Storage, Insert : Elem, Delete : Elem
Find : Elem → Bool
Init , Fork , Join, Leq
Σ = 2X × 2X I = Y

Init()
σin × σdel := {} × {} ι :=⊥
Insert(e)
σin := σin ∪ a

Delete(e)
pre? e ∈ σin
σin × σdel := (σin \ {e})× (σdel ∪ {e})
Find(e) → b

b :=

(
true if e ∈ σin

false if e 6∈ σin

Join(σι′, σι′′) → σι
σin × σdel := ((σ′in \ σ′′del ) ∪ (σ′′in \ σ′del ))× (σ′del ∪ σ′′del ) ι := ι′

∨ ι := ι′′

Leq(σι′, σι′′) → b

b :=

(
true if σ′del ⊆ σ′′del ∧ (σ′in \ σ′′del ) ⊆ (σ′′in \ σ′del )

false otherwise
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Merge and Reconciliation Data Types

CADT: IncDecSet Run

{a, c} × {b, d}

{a, b, c} × {d}

66lllllllllllll

{a, c} × {b}

Join

aaCCCCCCCCCCCCCCCCCCCC

{a, b, c, d} × {}

del d

OO

{a, b, c} × {}

ins d

OO

{a, b, c} × {}

del b

OO

{a, b, c} × {}

hhRRRRRRRRRRRRR Fork

66mmmmmmmmmmmm
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Merge and Reconciliation Data Types

CADT: IncNat
Type: INCNAT

Inc :
Count :→ N
Init , Fork , Join, Leq
Σ = 2∗ ↪→ N I = 2∗

Init()
σ := (〈〉 7→ 0) ι := 〈〉
Inc()
σ := σ † (ι 7→ σ(ι) + 1)

Count() → n
n :=

P
j∈dom(σ) σ(j)

Fork(σι) → σι′, σι′′

σ′ := σ ∪ (ι′ 7→ 0), σ′′ := σ ∪ (ι′′ 7→ 0) ι′ := ι + 〈0〉
ι′′ := ι + 〈1〉

Leq(σι′, σι′′) → b
let Delta0(σ′, σ′′) beV

e∈dom(σ′\(σ′∩σ′′)) σ′(e) = 0
in

b :=

8>>><>>>:
true if (ι′ 6= ι′′ ∧ dom(σ′) ⊆ dom(σ′′))

∨ (ι′ = ι′′ ∧ σ′(ι′) ≤ σ′′(ι′′))

∨ (ι′ 6= ι′′ ∧ Delta0(σ′, σ′′))

false otherwise
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Merge and Reconciliation Data Types

CADT: IncNat Run

〈0〉 7→ 3
〈00〉 7→ 0
〈01〉 7→ 0
〈010〉 7→ 0

〈0〉 7→ 3
〈01〉 7→ 0
〈010〉 7→ 0

∼=
aaCCCCCCCC

〈0〉 7→ 3
〈01〉 7→ 0
〈011〉 7→ 2

〈0〉 7→ 3
〈00〉 7→ 0

∼=

OO

〈0〉 7→ 3
〈01〉 7→ 0

∼=
ccGGGGGGGG

�
;;wwwwwwww

〈0〉 7→ 3

∼=
ffMMMMMMMMMM

∼=
99rrrrrrrrrr
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Merge and Reconciliation Data Types

IceCube: Log Based Reconciliation

In the state based, and data type based, reconcilation approaches
described earlier the treatment of conflicts addopted two policies: No
automated reconciliation of conflicting divergence; Conflict avoidance
by constrains on allowed data type behaviours.

IceCube, uses a diferent approach: Operations collected under
disconnection are kept in a log and, later on, logs are collected and a
reconciliation schedule is calculated. The reconciliation schedule is
choosen among alternative schedules. Some of the collected
operations from the input logs might be dropped.
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Merge and Reconciliation Data Types

IceCube: Log Based Reconciliation

The reconciliation process is centralized and is only triggered after
collecting all replica logs in a given node. The common schedule
strives to minimize the number of dropped operations, thus
maximizing the preservation of user intentions. The compatibility and
grouping requirements of operations are collected by a number of
semantic relations between operations.
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Merge and Reconciliation Data Types

IceCube: Constraints

Static Constraints Relates two actions unconditionally, e.g. Two
appointment requests for Joe at 10:00 in distinct places.

Dynamic Constraints Success or failure of a single operation
depending on the current state. e.g. An overdraft in a
money account.
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Merge and Reconciliation Data Types

IceCube: Primitive Static Constraints

Before Noted as →. For all actions α, β ∈ s, if α → β then α
comes before β in the schedule (not necessarelly
immediatly before).

mustHave Noted as .. For any α ∈ s, every action β such that
α . β is also in s (but not necessarely in that order nor
contiguosly).

These primitive constraints are composed to provide composite
primitives, used in log constraints and object constraints.
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Merge and Reconciliation Data Types

IceCube: Log Constraints

preSucc predSucc(α, β) is α → β ∧ β . α. Meaning that action β
executes only after α as succeeded. e.g. A user
updates a file and copies the new version, whishing
that the copy is only made if the update makes it to the
common log.

parcel

alternative
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Merge and Reconciliation Data Types

IceCube: Log Constraints

preSucc

parcel parcel(α, β) is α . β ∧ β . α. Meaning an all-or-nothing
grouping between two actions. Exhibiting a sub-set of
transactional properties. e.g. A user tentativley copies
two whole directory into a third directory as a parcel,
and any of the individual copies might fail.

alternative
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Merge and Reconciliation Data Types

IceCube: Log Constraints

preSucc

parcel

alternative parcel(α, β) is α → β ∧ β → α. Meaning only one of the
two actions can be choosen. Otherwise the constraint
would create a cycle. e.g. A user specifices a meeting
that can either occur at 10.00 or at 11:00.

c©2004-2005 Carlos Baquero Mobile Distributed Systems I



Merge and Reconciliation Data Types

IceCube Example: Reconcilable Mail Folders

A layer is interposed between a mail client and a mail server running
IMAP. And semantics are captured by constraints:

Mailbox creation is an idempotent action.

Renaming a folder is a parcel linking into the new location and
unlinking the old one.

Renaming the same mail folder with diferent names is a conflict.

Changing a message while concurrently removing it is a conflict.

Concurrently copying and deleting the same message is allowed.

The constraints, driven by application semantics, will lead to diferent
proprosed common log schedules that can be ultimalty choosen by a
user and commited as the new common state.
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Database Mobility Divergence Control

Divergence Control

Divergence can lead to conflicts and consequently to the need to
reconcile (or keep divergent state) or to drop some user actions.
There are several techniques that try to prevent or provide warnings
when the amount of divergence reaches predefined tresholds.
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Database Mobility Divergence Control

Divergence Control

Work on quasi-copies/quasi-caching [Alonso,Molina,Barbara]
introduces some intuitive metrics on divergence:

Temporal Validity periods or indications of critical times, such as
stock markets closing hours. Some ammount of clock
sinchrony may be required.

Version Limits can be imposed to the number of diferent
versions that separate disconnected states, this implies
knowing individual modifications.

Aritmetic Data fields that can be interpreted as values can base
metrics that limit aritmetic distance under
disconnection. For instance, stocks may be constrained
to only vary 10%.

Composite Composite criterias can be formed by applying logical
composition of base criterias.
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Database Mobility Divergence Control

Divergence Control

Work on the line of Epsilon-serializability [Caltan Pu et al] can use
knowledge on operation types to maximise future reconciliation.

Semantic Knowledge

In general, semantic knowledge of operation types can be explored to
flag portentially conflicting divergence and this can take into account
dynamic constraints. An example is limiting disconnected sales when
critical stock levels are approached.
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Database Mobility Divergence Control

MobiSnap

Mobile Transaction Management in Mobisnap, N. Preguiça, C.
Baquero et al. ADBIS-DASFAA 2000.

Adaptation of transactional system to mobility lead to the definition of
notions of tentative or weak transactions when accomodating
disconnected transactions. Compatibility of transactions was tipically
verified by the analysis of read and write sets.
MobiSnap extended this early work by defining a set of transaction
classes and extending prebious escrow techniques in order to
provides additional guaranties for mobile transactions.
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Database Mobility Divergence Control

MobiSnap: Problems to Handle

As expected, optimistic replication is used and fragments of shared
data are present on the database users mobile computers. Several
problems can occur:

Updates performed by diferent users may raise mutual conflicts.

Due to this it is often impossible do imediatly determine the result
of an update.

Mobile users may wish to update data not presently available on
their machine.
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Database Mobility Divergence Control

Mobisnap: Synopsis

A central database is hosted in a traditional server and will hold
the primary replica of all data items.

Mobile clients replicate subsets of the database items.

Mobile clients do updates by “mobile transactions” that are
specified in an extended subset of PL/SQL (Oracle).

Transactions state semantics by pre-conditions, post-conditions
and alternatives.

Final result of mobile transactions is determined after commiting
in the primary replica.

System support for user notification is provided (email,sms).
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Database Mobility Divergence Control

MobiSnap: Mobile Transaction

See Fig. 1 on paper.
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Database Mobility Divergence Control

MobiSnap: Interaction

In a connected environment users have “imediate” feedback on the
result of the transactions they issue. On failure, alternatives can be
issued in a subsequent transactions.

In disconnected mode users should provide the alternatives in the
tentative transaction.
Later on, when transactions reach the primary users can be notified
of the final outcome.
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Database Mobility Divergence Control

MobiSnap: Reservations

Reservations in MobiSnap are used to provide guaranties to
mobile/tentative transactions.

Escrow A partitionable resource can be devided and allocated
to diferent users. E.g. stocks.

Slot Reserves the right to insert a record with pre-defined
values. E.g. Scheduling a meeting in a defined period.

Value-change Reserve the right to change some values in the
database. E.g. The right to change a description of
some product.

Value-use Reserve the right to perform a value that use a given
value for some field. E.g. A salesperson reserves the
right to sell some product for a given price.

Leases

Reservations held by mobile user are limited in time.
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Database Mobility Divergence Control

MobiSnap: System Model

Clients keep two copies of data: Commited and Tentative.
Commited versions have be confirmed by an execution in the
server (but may be outdated).

When disconnected, applications can use both versions. They
should reflect to users the potential weak consistency (by color
codes, etc).

When connected clients gather reservations by interacting with
server side reservation scripts.

Servers use a standard SQL database and can have non-mobile
clients. Reservations must be actually enforced in the database.

Applications have mobile transaction templates that are
instantiated with user values to create actual mobile transactions.
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Database Mobility Divergence Control

MobiSnap: Mobile Executions

Depending on data and reservations on the mobile machine, tentative
transactions can have diferent outcomes while disconnected:

Reservation commit The code has executed until commit and all
steps are backed up by granted reservations. The
transaction will succedd if propagated in time.

Tentative commit The code has executed until commit but only some
steps are backed up by granted reservations.

Tentative abort The code execution lead to an abort while using the
tentative database state. It might suceed later if the
actual state changes.

Unknown Currently cached data is not enough to evaluate the
result of the transaction. Some fields can be absent
due to partial replication.
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Ad-hoc Networking

Ad-hoc Networking and Sensor Networks

To be continued . . .
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