
Improving on Version Stamps

Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte

Departamento de Informática, Universidade do Minho
Largo do Paço, 4709 Braga Codex

Abstract. Optimistic distributed systems often rely on version vectors
or their variants in order to track updates on replicated objects. Some
of these mechanisms rely on some form of global configuration or dis-
tributed naming protocol in order to assign unique identifiers to each
replica. These approaches are incompatible with replica creation under
arbitrary partitions, a typical operation mode in mobile or poorly con-
nected environments. Other mechanisms assign unique identifiers relying
on statistical correctness. In previous work we have introduced an up-
date tracking mechanism that overcomes these limitations. This paper
presents results from recent experimentation, that brought to surface a
particular pattern of operation that results in an unforeseen, unlimited
growth in space consumption. We also describe informally a new update
tracking mechanism that does not exhibit this pathological growth while
providing guaranteed unique identifiers for a dynamic number of replicas
under arbitrary partitions and the same functionality of version vectors.

1 Introduction

Tracking update dependencies on optimistic replication systems often resorts to
the use of version vectors [5] or some of its variants [7]. These mechanisms have
been devised and have been successfully supporting traditional scenarios with a
fixed number of replicas. Extensions to version vectors have been proposed [6] in
order to accommodate a variable number of replicas. However, when trying to
cope with the problem of replica identification there is an implicit assumption of
global configuration or of a well connected environment in which a distributed
naming protocol can be run and replica retirement detected. These assumptions
are incompatible with replica creation (and retirement) on distributed systems
subject to arbitrary partitions, a typical mode of operation of mobile or poorly
connected environments. Other approaches tackle this identification problem
relying on statistical correctness [4]. These approaches, not only may lead to
occasional errors (which, even very rare, may be unacceptable), but also lead to
large identifiers.

Previous work of the present authors [2] introduced the Version Stamp mech-
anism, a form of decentralized version vector overcoming these limitations. It en-
ables autonomous identity management, update tracking and comparison, solely
relying in local or pair-wise knowledge. This confinement is possible because:
its structure allows a local management of the identity namespace (both local



generation of identifiers when forking replicas and merging of identifiers when
joining replicas); and the information about updates to replicas is based on the
identity namespace in such a way as to allow global comparisons. This structure
was devised in such a way that it should naturally grow and collapse as replicas
are created and merged in the system.

Version Stamps have been employed in the Panasync [1] decentralized file
replication system. Recent experimentation, however, brought to surface a par-
ticular pattern of operation that, when repeatedly applied, leads to an unneces-
sary unbounded growth of its structure.

This paper identifies this particular pattern of operation and illustrates how
the version stamp structure degenerates under its occurrence. It also proposes
a new version tracking mechanism – inspired by recent insights on autonomous
identity management – that does not exhibit this unnecessary structural growth.

2 Version Stamps

Version stamps were devised in order to track update dependencies across a
set of replicas in a mobile or poorly connected environment. In this setting,
autonomous creation of replicas and pair-wise reasoning over update dependen-
cies are crucial requirements. Operations on version stamps cannot depend on a
global view of the system and thus they rely exclusively on local knowledge of
each replica.

The structure of a version stamp is made of an identity and an update compo-
nent. The identity component distinguishes each replica from all coexisting ones,
in any possible configuration. It is also used as an available namespace from which
new identities can be generated. This identity generated is achieved by names-
pace division as described below. The update component records “when” (in
which state) changes were applied to a replica. It consists of a single identity-like
value collected from the identity of its ancestor when the update was performed.

Three operations are provided: a fork operation supports the creation of
new replicas whose state is cloned from the original; a join operation supports
the merging of two replicas keeping one and retiring the other; and an update
operation accounts for changes on the state of a replica.

An update operation simply copies the identity to the update component.
This means that after an update, subsequent ones do not affect a version stamp.
This is an example of the goal, in the design of version stamps, to discard infor-
mation that is irrelevant to the comparison of coexisting elements in a configu-
ration.

At a fork operation the identity of the resulting version stamps is recursively
constructed by appending either ‘0’ or ‘1’ to the right of each component of the
ancestor identity. A fork does not modify the update component as it does not in-
troduce any update event (the ones tracked by the mechanism): it simply copies
the update component to the new version stamps. Regarding identity manage-
ment, the transformation applied to the identity component can be perceived as
the subdivision of the namespace available to a particular replica. Although a



local operation, the resulting namespaces are guaranteed to be globally unique
and thus distinguish the two new replicas from all the others in the current
configuration.

When a join between two elements occur the resulting identity is built by
merging the two ancestors identity components. The update component is built
likewise, merging the two ancestor update components; this reflects the com-
bined knowledge of past updates. Upon the join operation, the resulting identity
namespace can be perceived as the union of the two ancestors namespaces. This
resulting namespace can then be recursively collapsed each time sibling identity
namespaces are present (namespaces that have been previously split upon a fork
operation). Since the identity component always dominates the update compo-
nent (which records information regarding past state changes), this simplification
propagates to the update component. Ultimately, joining every coexisting replica
leads to a completely collapsed version stamp, bringing its structure to its initial
value, that is, two empty sets. This division and collapsing feature is an intended
design goal of the version stamp mechanism.

Figure 1 shows an example of the version stamp mechanism in action on a
replicated system. In this example a version stamp is represented by an [update |
identity] pair, the ε denotes an empty set and the δ denotes a local event of state
change. Though not shown in this example, as stated above, joining the two
remaining replicas would completely collapse the resulting version stamp. A de-
tailed and formal description of Version Stamps including its proof of correctness
can be found in [2].

[0 | 00]
δ // [00 | 00]

$$J
JJJJJJJJ

[ε | 0]
δ // [0 | 0]

77ppp

''NN
N

[ε | ε]
δ // [ε | ε]

δ // [ε | ε]

88qqq

&&MM
M [0 | 01] [00 + 1 | 00 + 1]

δ // [00 + 1 | 00 + 1]

[ε | 1]
δ // [1 | 1]

δ // [1 | 1]

22eeeeeeeeeee

Fig. 1. A set of partially ordered events with version stamps.

2.1 Pollution of the namespace

Exercising the version stamp mechanism, we have observed an undesired growth
of version stamps under a simple pattern of operation. This problem is illustrated
in Figure 2, which shows the identity component in a scenario where three repli-
cas are created and then we repeat a pattern in which two of them are joined
and forked again, while alternating replicas.

Although we end up with only three replicas, the identity components are
much more complex than in the configuration after the first two forks (with the
same number of replicas). In this scenario, the Version Stamp mechanism leads



to a overly refined namespace which cannot be simplified upon these interleaving
joins.

This growth gets worse every time this operation pattern occurs and recent
experimentation does indicate that this can be a fairly common case in practical
usage scenarios. Furthermore, when an update occurs, the identity component
is copied to the update component, thus aggravating this problem.

This degeneration of the namespace does not imply that the version stamp
mechanism is incorrect but that it may consume an unreasonable amount of
space. As a result, this growth pattern of version vectors can severely affect its
practical application.

0

**TTTTTTT 00 + 100??���

��>
>> 10 // 0 + 10

66mmm

((QQQ 010 + 1010 + 110

1

<<zzz

""DD
D 01 + 101 // 01 + 101 + 11

33ggggg

++WWWWW

11

11cccccccccccccccccc 011 + 1011 + 111

Fig. 2. Pollution in the identity component of version stamps.

3 Dynamic Map Clocks

Dynamic Map Clocks imports from version stamps the basic features that sup-
port autonomous identity management. Noticing that the lack of counters, on
version stamps, impose important restrictions on identity management that ul-
timately contributed to the identified growth problem, dynamic map clocks will
combine the use of counters with a more flexible identity management scheme.

The important property that rules identity management for update tracking
is the allocation to each replica of at least one identity that is exclusive to that
replica in a given moment. When an update needs registering in a given replica,
one identity must be chosen among its exclusive identities and the associated
counter must be incremented. This identity does not need to be the same for all
updates in that replica and replicas can handover identities to other replicas.

As a consequence of these insights it is easy to conceive a scheme where
replicas can fork by either specializing a binary identity (forking 010 would
derive 0100 and 0101) or by partitioning controlled identities that were obtained
upon joins (forking 010 + 10 + 111 could derive 010 + 111 and 10). This is the
basic mechanism that supports dynamic map clocks and Figure 3 shows a run
that illustrates this. More complex rules are enforced when handling joins and
setting counters upon joins.

3.1 Non-pollution of the namespace

Considering the namespace pollution problem that was present on version stamps,
it is easy to verify that dynamic map clocks are much more flexible on the han-



[03 | 00]
δ // [004 | 00]

%%LLLLLLLLLL

[ε2 | 0]
δ // [03 | 0]

77nnn

((PPP

[ε0 | ε]
δ // [ε1 | ε]

δ // [ε2 | ε]

77ooo

''OO
O [03 | 01] [004 + 14 | 00 + 1]

δ // [004 + 15 | 00 + 1]

[ε2 | 1]
δ // [13 | 1]

δ // [14 | 1]

22eeeeeeeeeeee

Fig. 3. A set of partially ordered events with dynamic map clocks.

dling of names. Figure 4 shows how the run that depicted a name pollution
pattern in version stamps is easily handled by this mechanism.

0

**TTTTTTT 0

ε

>>|||

  A
AA 10 // 0 + 10

88qqqq

&&LLL 10

1

<<zzz

""EE
E 10 // 10 + 11

88pppp

''NN
NN��

11

22eeeeeeeeeeeeee
1 11

Fig. 4. Non-pollution of the identity component in the dynamic map clock mechanism.

In some way, dynamic map clocks try to ally the innovative management of
identities that stems from version stamps with the benefits of classical counters
and their synthetic encoding of updates.

4 Discussion

Handling replication in highly decentralized systems and large scale settings –
in number of nodes, geographical distance or communication latency between
nodes– often implies the use of optimistic techniques in order to improve avail-
ability. In these scenarios, replicas are allowed to diverge from a consistent global
state but reconciliation procedures and update propagation strategies are put in
place so that consistency can eventually be restored. All these operations must
rely on some dependency tracking mechanism in order to infer the causal rela-
tions between replica states. As mentioned before, the standard version vector
mechanism assumes a consistent management of replicas names.

In decentralized distributed systems that face partitions, large membership
changes under churn and disconnected operation, one can no longer rely on the
assumption that globally unique names are available. A way of approaching these
settings is to avoid determinism altogether and rely on probabilistic approaches
such as generating random replica names, and assume some risk of name colli-
sions [3], or using sets of hashes of replica state to detect updates [4] once again
assuming some risk of collision. If reliability cannot be compromised, as is often
the case, only a deterministic approach is appropriate. Determinism can only



be obtained by recursive generation of names, the approach developed and for-
malized in our previous work on version stamps. However, as we have shown in
the present paper, recursive generation of names can easily introduce important
growth problems in the space consumed by the version stamp mechanism.

With dynamic map clocks we achieve a better handling of the data space by
avoiding unnecessary partitions of identifiers and concentrating on the important
property that each replica must at a given moment have exclusive access to
at least one globally unique identifier. Unlike version stamps, that do not use
counters, dynamic map clocks are, in a sense, a hybrid mechanism that also relies
on counters for registering updates. This usage of counters leads to important
savings in size. In addition, although the examples here have only shown runs
with join operations, dynamic map clocks allow the use of messages when sending
metadata and support unidirectional updating of dependency information.

While the theory of dynamic map clocks is still under development and a
proper formalization and formal proof is ongoing work, we already have a running
implementation of the mechanism. This implementation has been tested on long
random runs under various numbers of replicas and always evaluated as correct.
This evaluation is done by contrasting the causal pre-order that the mechanism
derives with the equivalent pre-order derived by causal histories. Causal histories
are implemented by assuming global knowledge and adding unique update events
to a set of events in each replica and relating this sets by set inclusion (see [2,
8] for more details on causal histories). We can comment, from our experience,
that incorrect mechanisms typically fail these checks after a small number of
steps and do not stay correct in long random runs.

Another important property of dynamic map clocks, not present in version
stamps, is their potential use as substitutes for vector clocks in autonomous
decentralized settings. Vector clocks, that are at the core of causal message
delivery protocols and distributed debugging, also rely on globally unique names
thus facing the same problems of version vectors.

References

1. Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Panasync: Dependency
tracking among file copies. In Paulo Guedes, editor, Ninth ACM SIGOPS European
Workshop, pages 7–12. DIKU - University of Copenhagen, 2000.

2. Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Version stamps – decen-
tralized version vectors. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS), pages 544–551. IEEE Computer Society,
2002.

3. Gerald A. Heuer. Estimation in a certain probability problem. The American
Mathematical Monthly, 66(8):704–706, 1959.

4. Brent ByungHoon Kang, Robert Wilensky, and John Kubiatowicz. The hash history
approach for reconciling mutual inconsistency. In Proceedings of the 23nd Inter-
national Conference on Distributed Computing Systems (ICDCS), pages 670–677.
IEEE Computer Society, 2003.

5. D. Stott Parker, Gerald Popek, Gerard Rudisin, Allen Stoughton, Bruce Walker,
Evelyn Walton, Johanna Chow, David Edwards, Stephen Kiser, and Charles Kline.



Detection of mutual inconsistency in distributed systems. Transactions on Software
Engineering, 9(3):240–246, 1983.

6. David Ratner, Peter Reiher, and Gerald Popek. Dynamic version vector mainte-
nance. Technical Report CSD-970022, Department of Computer Science, University
of California, Los Angeles, 1997.

7. Yasushi Saito and Marc Shapiro. Optimistic replication. Technical Report MSR-
TR-2003-60, Microsoft Research, 2003.

8. R. Schwarz and F. Mattern. Detecting causal relationships in distributed computa-
tions: In search of the holy grail. Distributed Computing, 3(7):149–174, 1994.


