
Bounded Version Vectors

José Bacelar Almeida?, Paulo Sérgio Almeida, and Carlos Baquero??

Departamento de Informática, Universidade do Minho
{jba,psa,cbm}@di.uminho.pt

Abstract. Version vectors play a central role in update tracking un-
der optimistic distributed systems, allowing the detection of obsolete or
inconsistent versions of replicated data. Version vectors do not have a
bounded representation; they are based on integer counters that grow
indefinitely as updates occur. Existing approaches to this problem are
scarce; the mechanisms proposed are either unbounded or operate only
under specific settings. This paper examines version vectors as a mech-
anism for data causality tracking and clarifies their role with respect to
vector clocks. Then, it introduces bounded stamps and proves them to be
a correct alternative to integer counters in version vectors. The resulting
mechanism, bounded version vectors, represents the first bounded solu-
tion to data causality tracking between replicas subject to local updates
and pairwise symmetrical synchronization.

1 Introduction

Optimistic replication is a critical technology in distributed systems, in particular
when improving availability of database systems and adding support to mobility
and partitioned operation [18]. Under optimistic replication, data replicas can
evolve autonomously by incorporation new updates into their state. Thus, when
contact can be established between two or more replicas, mutual consistency
must be evaluated and potential divergence detected.

The classic mechanism for assessing divergence between mutable replicas is
provided by version vectors which, since their introduction by Parker et al.
[14], have been one of the cornerstones of optimistic data management. Version
vectors associate to each replica a vector of integer counters that keeps track of
the last update that is known to have been originated in every other replica and
in the replica itself. The mechanism is simple and intuitive but requires a state
of unbounded size, since each counter in the vector can grow indefinitely.

The potential existence of a bounded substitute to version vectors has been
overlooked by the community. A possible cause is a frequent confusion of the roles
played by version vectors and vector clocks (e.g. [17, 18]), that have the same
representation [14, 5, 13], together with the existence of a minimality result by
Charron-Bost [4], stating that vector clocks are the most concise characterization
of causality among process events.
? Partially supported by FCT project POSI/ICHS/44304/2002.

?? Supported in part by FCT under grant BSAB/390/2003.

Operation Init():

(Vk
i)′ = 0.

Operation Upd(a):

(Vk
i)′ =

(
Vk

i + 1 if i = k = a;

Vk
i otherwise.

Operation Sync(a, b):

(Vk
a)′ = (Vk

b)′ = Vk
a tVk

b .

Fig. 1. Semantics of version vector operations

In this article we show that a bounded solution is possible for the prob-
lem addressed by version vectors: the detection of mutual inconsistency be-
tween replicas subject to local updates and pairwise symmetrical synchroniza-
tion. We present a mechanism, bounded stamps, that can be used to replace
integer counters in version vectors, stressing that the minimality result that pre-
cludes bounded vector clocks does not apply to version vectors. Due to space
limitations, proofs of Lemmas 1 and 3 are omitted. See [1] for full details.

2 Data Causality

Data causality on a set of replicas can be assessed via set inclusion of the sets of
update events known to each replica. Data causality is the pre-order defined by:

ra ≤ rb iff Ua ⊆ Ub ,

being Ua and Ub the sets of update events (globally unique events) known to
replicas ra and rb.

When tracking data causality with version vectors in an N replica system, one
associates to each replica ri ∈ {r0, . . . , rN−1} a vector Vi of N integer counters.
The order on version vectors is the standard pointwise (coordinatewise) order:

Va ≤V Vb iff ∀k. Vk
a ≤ Vk

b ,

where Vk
i denotes component k of vector Vi.

The operations on version vectors, formally presented in Fig. 1, are as follows:

Initialization (Init()) establishes the initial system state. All vectors are ini-
tialized with zeroes.

Update (Upd(a)) an update event in replica ra increments Va
a.

Synchronization (Sync(a, b)) synchronization of ra and rb is achieved by tak-
ing the pointwise join (greatest element) of Va and Vb.

This classic mechanism encodes data causality because comparing version
vectors gives the same result as comparing sets of known update events. For all
runs and replicas ra and rb:

ra ≤ rb iff Ua ⊆ Ub iff Va ≤V Vb .

r0 [0 000] • [1 000] ◦OO
²²

[1 100] • [2 100] ◦OO

²²

[2 100]

r1 [0 000] • [0 100] ◦ [1 100] ◦OO

²²

[2 100] • [2 200]

r2 [0 000] ◦OO
²²

[2 100]

r3 [0 000] ◦ [2 100] ◦ [2 100] ◦ [2 100]

Fig. 2. Version Vectors: example run, depicting slice 0 counters by a boxed digit

Figure 2 shows a run with version vectors in a four replica system. Updates
are depicted by a “•” and synchronization by two “◦” connected by a line.

2.1 Version vector slices

All operations over version vectors exhibit a pointwise nature: a given vector
position is only compared or updated to the same position in other vectors, re-
sulting from all information about updates originated in replica rk being stored
in component k of each version vector. This allows a decomposition of the repli-
cated system into N slices, where each slice represents the updates that were
originated in a given replica. Slice i for an N replica system is made up of the
ith component of each version vector:

〈Vi
0, . . . , V

i
N−1〉 .

This means that data causality in N replicas can be encoded by the con-
catenation of the representation for each of the N slices. It also means that
it is enough to concentrate on a subproblem: encoding the distributed knowl-
edge about a single source of updates, and the corresponding version vector slice
(VVS). The source of updates increments its counter and all other replicas keep
potentially outdated copies of that counter; this subproblem amounts to storing
a distributed representation of a total order.

For the remainder of the paper we will concentrate, for notational convenience
and without loss of generality, on finding a bounded representation for slice 0.
In the run presented in Fig. 2 this slice is shown using boxed counters.

2.2 On version vectors and vector clocks

Asynchronous distributed systems track causality and logical time among com-
municating processes by means of several mechanisms [12, 19], in particular vec-
tor clocks [5, 13]. While structurally equivalent to version vectors, vector clocks
serve a distinct purpose. Vector clocks track causality by establishing a strict
partial order on the events of processes that communicate by message passing,
and are known to be the most concise solution to this problem [4]. Vector clocks,
being a vector of integer counters, are unbounded in size, but so is the number
of events that must be ordered and timestamped by them. In short, vector clocks
order an unlimited number of events occurring in a given number of processes.

If we consider the role of version vectors, data causality, there is always a
limit to the number of possible relations that can be established on the set of
replicas. This limit is independent on the number of update events that are
considered on any given run. For example, in a two replica system {ra, rb} only
four cases can occur: ra = rb, ra < rb, rb > ra and ra ‖ rb. If the two replicas
are already divergent the inclusion of new update events on any of the replicas
does not change their mutual divergence and the corresponding relation between
them. In short, version vectors order a given number of replicas, according to an
unlimited number of update events.

The existence of a limited number of relations is a necessary but not sufficient
condition for the existence of a bounded characterization mechanism. A relation,
which is a global abstraction, must be encoded and computed through local
operations on replica pairs without the need for a global view. This is one of the
important properties of version vectors.

3 Informal presentation

We now give an informal presentation of the mechanism and give some intuition
of how it works and how it accomplishes its purpose. Having shown that it
is enough to concentrate on a subproblem (a single source of updates) and the
corresponding slice of version vectors, we now present the stamp that will replace,
in each replica, the integer counter of the corresponding version vector.

For problem size N , i.e. assuming N replicas, with r0 the “primary” where
updates take place and r1, . . . , rN−1 the “secondary” replicas, we represent a
stamp by something like

c b a
c a
a
c a

.

It has a representation of bounded size, as it consists of N rows, each with at
most N symbols (letters here), taken from a finite set LN . An example run
consisting of four replicas is presented in Fig. 3.

A stamp is, in abstract, a vector of totally ordered sets. Each of the N
components (rows in our notation) represents a total order, with the greatest
element on the left (the first row above means c > b > a). In a stamp for replica
ri, row i (i ∈ {0, . . . N −1}) is what we call the principal order (displayed with a
gray background), while the other rows are the cached orders. (Thus, the stamp
above would belong to replica r3.) The cached order in row j represents the
principal order of replica j at some point in time, propagated to replica i (either
directly or indirectly through several synchronizations).

The greatest element of the principal order (on the left, depicted in bold
over gray) is what we call the principal element. It represents the most recent
update (in the primary) known by the replica. In a representation using an
infinite total ordered set instead of LN nothing more would be needed. This
element can be thought of as “corresponding” to the value of the integer counter
in version vectors. The left column in a stamp (depicted in bold) is what we

r0

a
a
a
a

•
b a
a
a
a

◦OO

²²

b a
b a
a
a

•
c b a
b a
a
a

◦OO

²²

c b a
b a
a
c b a

◦OO

²²

c
c a
c
c

•
b c
c a
c
c

◦OO

²²

b c
b c
c
c

r1

a
a
a
a

◦
b a
b a
a
a

◦OO

²²

c b a
c a
a
c a

◦
b c
b c
c
c a

r2

a
a
a
a

◦OO

²²

c b a
c a
c
c

r3

a
a
a
a

◦
c b a
b a
a
c b a

◦
c b a
c a
a
c a

◦
c b a
c a
c
c

◦
c
c a
c
c

Fig. 3. Bounded stamps: example run

call the principal vector ; it is made up of the greatest element of each order
(row). It represents the most recent local knowledge about the principal element
of each replica (including itself). In a stamp, there is a relationship between the
principal order and the principal vector: the elements in the principal vector are
the same ones as in the principal order. In other words, the set of elements in
the principal vector is ordered according to the principal order.

3.1 Comparison and synchronization as well defined local operations

As we will show below, the mechanism is able to compare two stamps by a local
operation on the respective principal orders. No global knowledge is used: not
even a global order on the set of symbols LN is assumed. For comparison pur-
poses LN is simply an unordered set, with elements that are ordered differently
in different stamps. As an example, the comparison of

r0 =
b c
c a
c
c

with r1 =
c b a
c a
a
c a

involves looking at b c and c a , and gives r0 > r1.
When synchronizing two stamps, in the positions of the two principal ele-

ments, the resulting value will be the maximum of the two principal elements;
the rest of the resulting principal vector will be the pointwise maximum of the
respective values. The comparisons are performed according to the principal
orders of the two stamps involved.

It is important to notice that, in general, it is not possible to take two ar-
bitrary total orders and merge them into a new total order. As such, it could
be thought that computing the maximum as mentioned above is ill defined. As
we will show, several properties of the model can be exploited that make these

operations possible and well defined. We will also show that it is possible to
totally order the elements in the resulting principal vector, i.e. to obtain a new
principal order.

The update of cached-orders is trivial: if the element in the principal vector is
updated to a new value, the whole cached order is updated to the corresponding
one in the other replica; otherwise is remains as before.

3.2 Garbage collection for symbol reuse

The boundedness of the mechanism is only possible through symbol reuse. When
an update operation is performed, instead of incrementing an integer counter,
some symbol is chosen to become the new principal element. By using a finite
set of symbols LN , an update will eventually reuse a symbol that was already
used in the past to represent some previous update that has been synchronized
with other replicas.

However, by reusing symbols, an obvious problem arises that needs to be
addressed: the symbol reuse cannot compromise the well-definedness of the com-
parison operations described above. As an example, it would not be acceptable
that, due to reuse, the principal orders of two stamps end up being a b c and
c a , as it would not be possible to overcome the ambiguity between a > b > c
and c > a and to infer which one is the greatest stamp.

To address the problem, the mechanism implements a distributed “garbage
collection” of symbols. This is accomplished through the extra information in the
cached orders. As we will show, any element in the principal order/vector of any
replica is also present in the primary replica (in some principal or cached order).
This is the key property towards symbol reuse: when an update is performed,
any symbol which is not present in the primary replica is considered “garbage”
and can be (re)used for the new principal element.

As an example, in Fig. 3, when the final update occurs, symbol b can be
used for the new principal element because it is not present in the primary
replica. Notice that the scheme only assures that b does not occur in the principal
orders/vectors. In this example b occurs in some cached orders of replicas r1

and r2, but this is not a problem because those elements will not be used in
comparisons; the “old” b will not be confused with the “new” b.

3.3 Synopsis of formal presentation

The formal presentation and proof of correctness will make use of an unbounded
mechanism which we call the counter mode principal vectors (CMPV). This
auxiliary mechanism represents what the evolution of the principal vector would
be if we could afford to use integer counters. The mechanism makes use of the
total order on natural numbers and does not encode orders locally. In Fig. 4 we
present part of the run in Fig. 3 using the counter mode mechanism.

The bulk of the proof consists in establishing several properties of the CMPV
model that allow the relevant comparison operations to be computed in a well-
defined way using only local information. The key idea is that, exploiting these

r0

0
0
0
0

•
1
0
0
0

◦OO

²²

1
1
0
0

•
2
1
0
0

◦OO

²²

2
1
0
2

r1

0
0
0
0

◦
1
1
0
0

◦OO

²²

2
2
0
2

r2

0
0
0
0

◦OO

²²

2
2
2
2

r3

0
0
0
0

◦
2
1
0
2

◦
2
2
0
2

◦
2
2
2
2

Fig. 4. Counter mode principal vectors

properties, bounded stamps can be seen as an encoding of CMPV using a fi-
nite set LN , where the principal orders are used to encode the relevant order
information.

4 Counter Mode Principal Vectors

Version Vector Slices (VVS) rely on an unbounded totally ordered set – the
natural numbers. Their unbounded nature is actually a consequence of adopt-
ing a predetermined order relation (and hence globally known) to capture data
causality among replicas. To overcome this, we enrich VVS in a way that order
judgments become, in a sense, local to each replica. In this way, it will be possible
to dynamically encode the causality order and open the perspective of bounding
the “counters” domain.

For a replica index a, its stamp in the CMPV model is denoted by Ca and
defined as the tuple 〈a, a〉 where a is a vector of integers with size N – the
principal vector for Ca (see Fig. 4). The value in position k of vector a is denoted
by ak and represents the knowledge of stamp Ca concerning the most recent
update known by stamp Ck. The element aa plays a central role since it holds
Ca’s view about the more recent update – this is essentially the information
contained in VVS counters and we call it the principal element for stamp Ca.

Figure 5 defines the semantics of the operations in the CMPV model.1 Sym-
bol t denotes the join operation under integer ordering (i.e. taking the maxi-
mum element). Notice that the order information is only required to perform
the synchronization operation. Moreover, comparisons are always between prin-
cipal elements or pointwise (between the same position in two principal vectors).

1 Recall that the problem under consideration is restricted to slice 0. In particular,
this implies that one considers only update events for replica 0.

Operation Init():

(ak)′ = 0.

Operation Upd(0):

(ak)′ =

(
ak + 1 if a = k = 0;

ak otherwise.

Operation Sync(a, b):

(ak)′ = (bk)′ =

(
aa t bb if k ∈ {a, b};
ak t bk otherwise.

Fig. 5. Semantics of operations in CMPV

Occasionally, it will be convenient to write a t b for the result of the synchro-
nization on stamps Ca and Cb (i.e. the principal vector of one of these stamps
after synchronization).

A trace consists of a sequence of operations starting with Init() and followed
by an arbitrary number of updates and synchronizations. In the remainder, when
stating properties in the CMPV, we will leave implicit that they only refer to
reachable states, i.e. states that result from some trace of operations. Induction
over the traces is the fundamental tool to prove invariance properties, as the
following simple facts about CMPV.

Proposition 1. For every stamp Ca, Cb and index k,

1. ab ≤ bb,
2. aa ≤ 00,
3. ak ≤ aa.

Proof. Simple induction on the length of traces. ut
Given stamps Ca and Cb we define their data causality order under CMPV

(≤C) as the comparison of their principal elements:

Ca ≤C Cb iff aa ≤ bb .

By Fig. 5 it can be seen that the computation of principal elements only
depends upon principal elements. Moreover, if we restrict the impact of the op-
erations to the principal element we recover the VVS semantics. This observation
leads immediately to the correctness of CMPV as a data causality encoding for
slice 0:

Ca ≤C Cb iff V0
a ≤V V0

b .

This result is not surprising since CMPV was defined as a semantics preserving
extension of VVS.

Next we will show that the additional information contained in the CMPV
model makes it possible to avoid relying on the integer order, and to replace it
with a locally encoded order. For this, we will use a non-trivial invariant on the
global state given by the following lemma.

Lemma 1. For every stamp Ca and Cb and index k,

aa ≤ bb and bk ≤ ak implies ak ∈ b .

Recall that the order information is only required to perform the synchroniza-
tion operation. Moreover, comparisons are always between principal elements or
pointwise (between the same position in two principal vectors). In the following
we will show that these comparisons can be performed without relying on integer
order as long as we can order the elements in the principal vector of each stamp
individually.

Comparison between principal elements reduces to a membership testing.

Proposition 2. For every stamp Ca, Cb,

aa ≤ bb iff aa ∈ b .

Proof. =⇒ If aa ≤ bb then, by Proposition 1(1) we have that ba ≤ aa and so, by
Lemma 1, aa ∈ b.

⇐= If aa ∈ b then, by Proposition 1(3) we have that aa ≤ bb. ut
For a stamp Ca, let us denote by ≤a the restriction of the intrinsic integer

order to the values contained in the principal vector a:

x ≤a y iff x ≤ y and x ∈ a and y ∈ a .

Using these orderings, we define new ones that are appropriate to perform the
required comparisons. For stamps Ca and Cb, let their combined order ≤ab be
defined as:

x ≤ab y iff (bb ∈ a and (x ∈ a ⇒ x ≤a y)) or
(aa ∈ b and (x ∈ b ⇒ x ≤b y)) .

For convenience, we also define the corresponding join operation t
ab

as:

x t
ab

y =

{
y if x ≤ab y,

x otherwise.

The following proposition establishes the claimed properties for this ordering.

Proposition 3. For every stamp Ca and Cb and index k,

1. aa ≤ bb iff aa ≤ab bb,
2. ak ≤ bk iff ak ≤ab bk.

Proof. (1) Follows directly from Propositions 1 and 2.
(2) =⇒ Let ak ≤ bk. When bb ≤ aa Proposition 2 guarantees that bb ∈ a and,

by Lemma 1, we have bk ∈ a and then ak ≤a bk, which establishes ak ≤ab bk.
The case aa < bb is trivial since, either ak ∈ b (in which case ak ≤b bk), or ak 6∈ b
and so ak ≤ab bk. ⇐= Let ak 6≤ bk (that is, bk < ak). The proof proceeds as in
the previous implication. ut

Restricted orders can be explicitly encoded (e.g. by a sequence) and can be
easily manipulated. We now show that when a synchronization is performed,
all the elements in the resulting principal vector were already present in the
more up-to-date stamp. This means that the restricted order that results is a
restriction of the one from the more up-to-date stamp.

Proposition 4. Let Ca and Cb be stamps and Cx = Ca t Cb. If aa ≤ bb then,
for all k,

xk ∈ b .

Proof. For the pointwise join xk = ak t bk: if ak ≤ bk then xk = bk ∈ b; if
bk ≤ ak then, by Lemma 1, ak ∈ b. Otherwise, note that the resulting principal
element (bb) is already in b. ut

These observations together with the fact that the global state can only retain
a bounded amount of integer values (an obvious limit is N2) opens the way for
a change in the domain from the integers in the CMPV model to a finite set.

5 Bounded Stamps

A migration from the domain of integer counters in CMPV to a finite set LN is
faced with the following difficulty: the update operation should be able to choose
a value, that is not present in any principal vector, for the new principal element
in the primary.

Adopting a set LN sufficiently large (e.g. with N2 elements) guarantees that
such a choice exists under a global view. The problem lies in making that choice
using only the information in the state of the primary. To overcome this problem
we make a new extension of the model that allows the primary to keep track of
all the values in use in the principal vectors of all stamps.

We will present this new model parameterized by a set LN (the symbol
domain), a distinguished element 0 ∈ LN (the initial element), and an oracle
for new symbols new(−) (satisfying an axiom described below). For each replica
index a, its local state in the bounded stamps model is denoted by Ba and defined
as 〈a, a, a 〉 where:

– a is the replica index;
– a is a vector of values from LN with size N – the principal vector;
– a is a vector of N total orders, encoded as sequences, representing the full

bounded stamp.

This last component contains all the information in the principal vector,
the principal order and the cached orders. Although the principle vector a is
redundant (as each component ak is also present in the first position of each ak),
it is kept in the model for notational convenience in describing the operations
and in establishing the correspondence between the models.

The intuitive idea is that the state for each stamp keeps an explicit repre-
sentation of the restricted orders. More precisely, for stamp Ba, the sequence

Operation Init():

(ak)′ = 0,

(a k)′ = 〈0〉.
Operation Upd(0):

(00)′ = new(0),

(0
0
)′ = new(0) · 0 0

|(0)′ .

Operation Sync(a, b):

(ak)′ = (bk)′ =

8<:aa t
ab

bb if k ∈ {a, b},
ak t

ab
bk otherwise,

if k ∈ {a, b}:

(a k)′ = (b
k
)′ =

(
b

b
|(b)′ if aa ∈ b,

a a
|(a)′ otherwise,

if k 6= a and k 6= b:

(a k)′ =

(
b

k
if (ak)′ 6= ak,

a k otherwise,

(b
k
)′ =

(
a k if (bk)′ 6= bk,

b
k

otherwise.

Fig. 6. Semantics of operations on BS model

aa contains precisely the elements of a ordered downward (first element is aa).
From that sequence one easily defines the restricted order for stamp Ba, what
we call principal order to emphasize its explicit nature.

x ≤B
a y iff x = y or 〈y, x〉 = aa

|{x,y} ,

where l|m denotes the sequence l restricted to the elements in m, i.e. 〈x | x ∈
l and x ∈ m〉. The combined order ≤ab and associated join are defined precisely
as in counter mode, that is

x ≤ab y iff (bb ∈ a ∧ (x ∈ a ⇒ x ≤B
a y)) or

(aa ∈ b ∧ (x ∈ b ⇒ x ≤B
b y)) .

The other sequences in a keep information about (potentially outdated)
principal orders of other stamps – these are called the cached orders.

Figure 6 gives the semantics for the operations in this model. The oracle for
new symbols new(−) is a function that gives an element of LN satisfying the
following axiom:

For every stamp Ba, new(0) 6∈ a .

The argument 0 in the oracle new(−) intends to emphasize that the choice of
the new symbol should be made based on the primary local state.

Data causality ordering under the Bounded Stamps model is defined by

Ba ≤B Bb iff aa ∈ b .

The correctness of the proposed model follows from the observation that,
apart from the cached orders used for the symbol reuse mechanism, it is actually
an encoding of the CMPV model. To formalize the correspondence between both
models, we introduce an encoding function [[−]]− that maps each integer in the
CMPV model into the corresponding symbol (in LN) in the state resulting from
a given trace. This map is defined recursively on the traces.

[[n]]Init() = 0,

[[n]]α ·Upd(0) =

{
new(0α) if n =

∣∣α|Upd(0)

∣∣ + 1,
[[n]]α otherwise,

[[n]]α · Sync(x,y) = [[n]]α.

Where
∣∣α|Upd(0)

∣∣ is the number of update events in α, 0α is the bounded stamp
for the primary after trace α, and new(0α) gives a canonical choice for the new
principal element on the primary after the update. When we discard the cached
orders, the semantics of operations given in Fig. 6 are precisely the ones in
CMPV (Figure 5) affected by the encoding map. Moreover, the principal orders
are encodings for the restricted orders presented in the previous section.

Lemma 2. For an arbitrary trace α, replicas index a and b:

1. ak = [[ak]]α,
2. [[ai]]α = [[aj]]α implies ai = aj ,
3. x ≤a y iff [[x]]α ≤B

a [[y]]α.

Proof. This results from a simple induction on the length of traces. When the last
operation was Init() it is trivial. When it was Upd(0), the result follows from
the induction hypothesis and the axiom for the oracle new(−). When it was
Sync(x, y) the result follows from induction hypothesis, the fact that definitions
on both models coincide since ≤ab computes the required joins (Proposition 3),
and the correctness of the new restricted orders (Proposition 4). ut

As a simple consequence of the previous result, we can state the following
correctness result.

Proposition 5. For any arbitrary trace α and replica indexes a and b we have

Ba ≤B Bb iff Ca ≤C Cb .

Proof. Immediate from Lemma 2 and the definitions of ≤B and ≤C. ut
It remains to instantiate the parameters of the model. A trivial but un-

bounded instantiation would be: set LN as the integers, 0 as value 0 and new(0) =
00 + 1. In this setting, principal orders would be an explicit representation of
counter mode restricted orders. Obviously, we are interested in bounded instanti-
ations of LN . To show that such instantiations exists, we introduce the following
lemma that puts in evidence the role of cached orders.

Lemma 3. For every stamp Ba there exists an i such that

aa ⊆ 0 i
.

We are now able to present a bounded instantiation for the model. Let LN be
a totally ordered set with N2 elements (we have observed by model-checking that
not all N2 elements are needed, but this is enough for our purpose of proving
boundedness; the total order is here only to avoid making non-deterministic
choices). We define:

0 = uLN ,

new(a) = u{x | x ∈ LN and x /∈ a}.
Lemma 3 guarantees that new(0) satisfies the axiom. It follows then that it acts
as an encoding of counter mode model (Proposition 5). Thus we have constructed
a bounded model for the data causality problem in a slice, which generalizes,
by concatenating slices, to the full data causality problem addressed by version
vectors.

6 Related Work

On what concerns bounded replacements for version vectors there is, up to our
knowledge, no previous solution to the problem. The possible existence of a
bounded substitute to version vectors was referred in [2] while introducing the
version stamps concept. Version stamps allow the characterization of data causal-
ity in settings where version vectors cannot operate, namely when replicas can
be created and terminated autonomously.

There have been several approaches to version vector compression. Update
coalescing [15] takes advantage of the fact that several consecutive updates issued
in isolation in a single replica can be made equivalent to a single large update.
Update coalescing is intrinsic in bounded stamps since sequence restriction in the
update operation discards non-propagated symbols. Dynamic compression [15]
can effectively reduce the size of version vectors by removing a common minimum
from all entries (along each slice). However, this technique requires distributed
consensus on all replicas and therefore cannot progress if one or more replicas are
unreachable. Unilateral version vector pruning [17] avoids distributed consensus
by allowing unilateral deletion of inactive version vectors entries, but relies on
some timing assumptions on the physical-clock’s skew.

Lightweight version vectors [9] develop an integer encoding technique that
allows a gradual increase of integer storage as counters increase. This technique
is used in conjunction with update coalescing to provide a dynamic size repre-
sentation. Hash histories [10] track data causality by collecting hash fingerprints
of contents. This representation is independent of the number of replicas but
grows in proportion to the number of updates.

The minimality of vectors clocks as a characterization of Lamport causal-
ity [12], presented by Charron-Bost [4] and recently re-addressed in [7], indi-
cates particular runs where the full expressiveness of vectors clocks is required.

However there are cases in which smaller representations can operate: Plausi-
ble Clocks [20] offer a bounded substitute to vectors clocks that are accurate
in a large percentage of situations and may be used in settings were deviations
only impacts performance and not correctness; Resettable Vector Clocks [3] al-
low a bounded implementation of vector clocks under a specific communication
pattern between processes.

The collection of cached copies of the knowledge in other replicas has been
explored before in [6, 21] and used for optimization of message passing strategies.
This concept is sometimes referred to as matrix clocks [16]. These clocks are
based on integer counters and are similar to our intermediate “counter mode
principal vector” representation.

7 Conclusions

Version vectors are the key mechanism in the detection of inconsistency and
obsolescence among optimistically replicated data. This mechanism has been
used extensively in the design of distributed file systems [11, 8], in particular for
data causality tracking among file copies. It is well known that version vectors
are unbounded due to their use of counters; some approaches in the literature
have tried to address this problem.

We have brought the attention to the fact that causally ordering a limited
number of replicas does not require the full expressive power of version vec-
tors. Due to the limited number of configurations among replicas, data causality
tracking does not necessarily imply the use of unbounded mechanisms. As a
consequence, Charron-Bost’s minimality of vector clocks cannot be transposed
to version vectors. The key to bounded stamps was defining an intermediate
unbounded mechanism and showing that it was possible to perform comparisons
without requiring a global total order. Bounded stamps were then derived as an
encoding into a finite set of symbols. This required the definition of a non-trivial
symbol reuse mechanism that is able to progress even if an arbitrary number
of replicas ceases to participate in the exchanges. This mechanism may have a
broader applicability beyond its current use (e.g. log dissemination and pruning)
and become a building block in other mechanisms for distributed systems.

Bounded version vectors are obtained by substituting integer counters on
version vectors by bounded stamps. It represents the first bounded mechanism
for detection of obsolescence and mutual inconsistency in distributed systems.

References

1. José Bacelar Almeida, Paulo Sérgio Almeida, and Carlos Baquero. Bounded ver-
sion vectors. Technical Report UMDITR2004.01, Departamento de Informática,
Universidade do Minho, July 2004.

2. Paulo Sérgio Almeida, Carlos Baquero, and Victor Fonte. Version stamps – decen-
tralized version vectors. In Proceedings of the 22nd International Conference on
Distributed Computing Systems (ICDCS), pages 544–551. IEEE Computer Society,
2002.

3. A. Arora, S. S .Kulkarni, and M. Demirbas. Resettable vector clocks. In 19th
Symposium on Principles of Distributed Computing (PODC’2000), Portland, 2000.
ACM, 2000.

4. Bernadette Charron-Bost. Concerning the size of logical clocks in distributed sys-
tems. Information Processing Letters, 39:11–16, 1991.

5. Colin Fidge. Timestamps in message-passing systems that preserve the partial
ordering. In 11th Australian Computer Science Conference, pages 55–66, 1989.

6. Michael J. Fischer and A. Michael. Sacrificing serializability to attain high avail-
ability of data. In Proceedings of the ACM Symposium on Principles of Database
Systems, pages 70–75. ACM, 1982.

7. V. K. Garg and C. Skawratananond. String realizers of posets with applications
to distributed computing. In Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC’01), pages 72–80. ACM, 2001.

8. Richard G. Guy, John S. Heidemann, Wai Mak, Thomas W. Page, Gerald J. Popek,
and Dieter Rothmeier. Implementation of the ficus replicated file system. In
USENIX Conference Proceedings, pages 63–71. USENIX, June 1990.

9. Yun-Wu Huang and Philip Yu. Lightweight version vectors for pervasive computing
devices. In Proceedings of the 2000 International Workshops on Parallel Processing,
pages 43–48. IEEE Computer Society, 2000.

10. Brent ByungHoon Kang, Robert Wilensky, and John Kubiatowicz. The hash his-
tory approach for reconciling mutual inconsistency. In Proceedings of the 23nd
International Conference on Distributed Computing Systems (ICDCS), pages 670–
677. IEEE Computer Society, 2003.

11. James Kistler and M. Satyanarayanan. Disconnected operation in the coda file
system. ACM Transaction on Computer Systems, 10(1):3–25, February 1992.

12. Leslie Lamport. Time, clocks and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

13. Friedemann Mattern. Virtual time and global clocks in distributed systems. In
Workshop on Parallel and Distributed Algorithms, pages 215–226, 1989.

14. D. Stott Parker, Gerald Popek, Gerard Rudisin, Allen Stoughton, Bruce Walker,
Evelyn Walton, Johanna Chow, David Edwards, Stephen Kiser, and Charles Kline.
Detection of mutual inconsistency in distributed systems. Transactions on Software
Engineering, 9(3):240–246, 1983.

15. David Howard Ratner. Roam: A Scalable Replication System for Mobile and Dis-
tributed Computing. PhD thesis, 1998. UCLA-CSD-970044.

16. Frédéric Ruget. Cheaper matrix clocks. In Proceedings of the 8th International
Workshop on Distributed Algorithms, pages 355–369. Springer Verlag, LNCS, 1994.

17. Yasushi Saito. Unilateral version vector pruning using loosely synchronized clocks.
Technical Report HPL-2002-51, HP Labs, 2002.

18. Yasushi Saito and Marc Shapiro. Optimistic replication. Technical Report MSR-
TR-2003-60, Microsoft Research, 2003.

19. R. Schwarz and F. Mattern. Detecting causal relationships in distributed compu-
tations: In search of the holy grail. Distributed Computing, 3(7):149–174, 1994.

20. F. J. Torres-Rojas and M. Ahamad. Plausible clocks: constant size logical clocks
for distributed systems. Distributed Computing, 12(4):179–196, 1999.

21. G. T. J. Wuu and A. J. Bernstein. Efficient solutions to the replicated log and
dictionary problems. In Proceedings of the ACM Symposium on Principles of Dis-
tributed Computing (PODC’84), pages 232–242. ACM, 1984.

